Thrombus formation in blood-contacting medical devices is a major concern in the medical device industry, limiting the clinical efficacy of these devices. Further, a locally formed clot within the device has the potential to detach from the surface, posing a risk of embolization. Clot embolization from blood-contacting cardiovascular devices can result in serious complications like acute ischemic stroke and myocardial infarction. Therefore, clot embolization associated with device-induced thrombosis can be life-threatening and requires an enhanced fundamental understanding of embolization characteristics to come up with advanced intervention strategies. Therefore, this work aims to investigate the adhesive characteristics of blood clots on common biocompatible materials used in various cardiovascular devices. This study focuses on characterizing the adhesion strength of blood clots on materials such as polytetrafluoroethylene (PTFE), polyurethane (PU), polyether ether ketone (PEEK), nitinol, and titanium, frequently used in medical devices. In addition, the effect of incubation time on clot adhesion is explored. Results from this work demonstrated strongest clot adhesion to titanium with 3 h of incubation resulting in 1.06 ± 0.20 kPa detachment stresses. The clot adhesion strength on titanium was 51.5% higher than PEEK, 35.9% higher than PTFE, 63.1% higher than PU, and 35.4% higher than nitinol. Further, adhesion strength increases with incubation time for all materials. The percentage increase in detachment stress over incubation time (ranging from 30 min to 3 h) for polymers ranged from at least 108.75% (PEEK), 140.74% (PU), to 151.61% (PTFE). Whereas, for metallic surfaces, the percentage rise ranged from 70.21% (nitinol) to 89.28% (titanium). Confocal fluorescence imaging of clot remnants on the material surfaces revealed a well-bounded platelet-fibrin network at the residual region, representing a comparatively higher adhesive region than the non-residual zone of the surface. 
                        more » 
                        « less   
                    This content will become publicly available on May 3, 2026
                            
                            ThermoTape: A Temperature-Responsive Medical Adhesive Minimizing MARSI Risks with Adaptability Across Applications and Wear Durations
                        
                    
    
            Abstract Medical adhesives are vital for securing wearable sensors, wound dressings, and critical medical devices. These adhesives must balance strong adhesion with patient comfort, especially when used over extended periods. Adhesives that maintain their efficacy for more than two weeks are essential for continuous monitoring devices, as they enhance diagnostic accuracy and reduce dressing changes, minimizing patient discomfort and infection risk. However, current long-wear adhesives often use aggressive acrylics that can cause skin injuries. To overcome these limitations, we developed an advanced ThermoTape offering temperature-responsive properties with a polyurethane backing for more than 14 days of wear. A double transfer coating process fabricated PU-ThermoTape, with surface morphology characterized using Atomic Force Microscopy. Differential Scanning Calorimetry and thermography determined the optimal removal window. Peeling strength tests were conducted at room and elevated temperatures to assess performance. In vitro, PU-ThermoTape displayed an average peeling strength of 0.3 N/mm at 25 °C, decreasing by 75% when heated to 45°C, with an optimal removal window of approximately 2.5 minutes. The tape demonstrated excellent skin conformity with its polyurethane backing. In a 14-day wearability study with seven volunteers, PU-ThermoTape outperformed Tegaderm, maintaining temperature-responsiveness and allowing unrestricted daily activities throughout. PU-ThermoTape provides robust adhesion, high skin conformity, and facilitates gentle removal after brief warming, positioning it as a versatile adhesive suitable for various applications with different duration requirements. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2234356
- PAR ID:
- 10588506
- Publisher / Repository:
- ASME - The American Society of Mechanical Engineers
- Date Published:
- Journal Name:
- Journal of Medical Devices
- ISSN:
- 1932-6181
- Page Range / eLocation ID:
- 1 to 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The fabrication of pressure sensitive adhesives (PSAs) using liquid crystal elastomers (LCEs), which are known for their excellent dissipation properties, is explored in this work. The adhesive properties of the PSAs are evaluated using the 180° peeling test at various conditions. The performance of the LCE adhesives is found to show significant rate and temperature dependence. When the adhesion energy is plotted against the rate, LCE shows an anomalously large power law exponent (n≈ 1.17) compared to existing PSAs (n≈ 0.1–0.6). The unusual rate sensitivity is hypothesized to originate from the synergy of soft elasticity and non‐linear viscoelasticity. The adhesive properties at various rates and temperatures are correlated to the results from dynamic mechanical analysis. Moreover, the large strain stiffening behavior of LCE under uniaxial tension reveals the distinctive advantages offered by LCE as adhesives. Time‐temperature superposition is used to obtain a master curve of adhesion energy that spans rates beyond typical experimental limits. The extreme rate dependence and the large strain stiffening of LCE yield a new category of adhesives that possess special properties, such as reversible adhesion and impact resistance, unlike traditional adhesives.more » « less
- 
            Adhesives typically fall into two categories: those that have high but irreversible adhesion strength due to the formation of covalent bonds at the interface and are slow to deploy, and others that are fast to deploy and the adhesion is reversible but weak in strength due to formation of noncovalent bonds. Synergizing the advantages from both categories remains challenging but pivotal for the development of the next generation of wound dressing adhesives. Here, we report a fast and reversible adhesive consisting of dynamic boronic ester covalent bonds, formed between poly(vinyl alcohol) (PVA) and boric acid (BA) for potential use as a wound dressing adhesive. Mechanical testing shows that the adhesive film has strength in shear of 61 N/cm 2 and transcutaneous adhesive strength of 511 N/cm 2 , generated within 2 min of application. Yet the film can be effortlessly debonded when exposed to excess water. The mechanical properties of PVA/BA adhesives are tunable by varying the cross-linking density. Within seconds of activation by water, the surface boronic ester bonds in the PVA/BA film undergo fast debonding and instant softening, leading to conformal contact with the adherends and reformation of the boronic ester bonds at the interface. Meanwhile, the bulk film remains dehydrated to offer efficient load transmission, which is important to achieve strong adhesion without delamination at the interface. Whether the substrate surface is smooth (e.g., glass) or rough (e.g., hairy mouse skin), PVA/BA adhesives demonstrate superior adhesion compared to the most widely used topical skin adhesive in clinical medicine, Dermabond.more » « less
- 
            The precise control of crack propagation at bonded interfaces is crucial for smart adhesives with advanced performance. However, previous studies have primarily concentrated on either microscale or macroscale crack propagation. Here, we present a hybrid adhesive that integrates microarchitectures and macroscopic nonlinear cut architectures for unparalleled adhesion control. The integration of these architectural elements enables conformal attachment and simultaneous crack trapping across multiple scales for high capacity, enhancing adhesion by more than 70×, while facilitating crack propagation at the macroscale in specific directions for programmable release and reusability. As adhesion strength and directionality can be independently controlled at any location, skin adhesive patches are created that are breathable, nondamaging, and exceptionally strong and secure yet remove easily. These capabilities are demonstrated with a skin-mounted adhesive patch with integrated electronics that accurately detects human motion and wirelessly transmits signals, enabling real-time control of avatars in virtual reality applications.more » « less
- 
            Polyurethane (PU) elastomers are among the most used rubberlike materials due to their combined merits, including high abrasion resistance, excellent mechanical properties, biocompatibility, and good processing performance. A PU elastomer exhibits pronounced hysteresis, leading to a high toughness on the order of 104 J/m2. However, toughness gained from hysteresis is ineffective to resist crack growth under cyclic load, causing a fatigue threshold below 100 J/m2. Here we report a fatigue-resistant PU fiber–matrix composite, using commercially available Spandex as the fibers and PU elastomer as the matrix. The Spandex fibers are stiff, strong, and stretchable. The matrix is soft, tough, and stretchable. We describe a pullout test to measure the adhesion toughness between the fiber and matrix. The test is highly reproducible, showing an adhesion toughness of 3170 J/m2. The composite shows a maximum stretchability of 6.0, a toughness of 16.7 kJ/m2, and a fatigue threshold of 3900 J/m2. When a composite with a precut crack is stretched, the soft matrix causes the crack tip to blunt greatly, which distributes high stress over a long segment of the Spandex fiber ahead the crack tip. This deconcentration of stress makes the composite resist the growth of cracks under monotonic and cyclic loads. The PU elastomer composites open doors for realistic applications of fatigue-resistant elastomersmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
