skip to main content


Title: Fast, strong, and reversible adhesives with dynamic covalent bonds for potential use in wound dressing
Adhesives typically fall into two categories: those that have high but irreversible adhesion strength due to the formation of covalent bonds at the interface and are slow to deploy, and others that are fast to deploy and the adhesion is reversible but weak in strength due to formation of noncovalent bonds. Synergizing the advantages from both categories remains challenging but pivotal for the development of the next generation of wound dressing adhesives. Here, we report a fast and reversible adhesive consisting of dynamic boronic ester covalent bonds, formed between poly(vinyl alcohol) (PVA) and boric acid (BA) for potential use as a wound dressing adhesive. Mechanical testing shows that the adhesive film has strength in shear of 61 N/cm 2 and transcutaneous adhesive strength of 511 N/cm 2 , generated within 2 min of application. Yet the film can be effortlessly debonded when exposed to excess water. The mechanical properties of PVA/BA adhesives are tunable by varying the cross-linking density. Within seconds of activation by water, the surface boronic ester bonds in the PVA/BA film undergo fast debonding and instant softening, leading to conformal contact with the adherends and reformation of the boronic ester bonds at the interface. Meanwhile, the bulk film remains dehydrated to offer efficient load transmission, which is important to achieve strong adhesion without delamination at the interface. Whether the substrate surface is smooth (e.g., glass) or rough (e.g., hairy mouse skin), PVA/BA adhesives demonstrate superior adhesion compared to the most widely used topical skin adhesive in clinical medicine, Dermabond.  more » « less
Award ID(s):
1720530
NSF-PAR ID:
10414935
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
29
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Herein, we present the direct modification of glucose, an abundant and inexpensive sugar molecule, to produce new sustainable and functional polymers. Glucose-6-acrylate-1,2,3,4-tetraacetate (GATA) has been synthesized and shown to provide a useful glassy component for developing an innovative family of elastomeric and adhesive materials. A series of diblock and triblock copolymers of GATA and n -butyl acrylate (n-BA) were created via Reversible Addition–Fragmentation Chain Transfer (RAFT) polymerization. Initially, poly(GATA)- b -poly(n-BA) copolymers were prepared using 4-cyano-4-[(ethylsulfanylthiocarbonyl)sulfanyl] pentanoic acid (CEP) as a chain transfer agent (CTA). These diblock copolymers demonstrated decomposition temperatures of 275 °C or greater and two glass transition temperatures ( T g ) around −45 °C and 100 °C corresponding to the PnBA and PGATA domains, respectively, as measured by differential scanning calorimetry (DSC). Triblock copolymers of GATA and n-BA, with moderate dispersities ( Đ = 1.15–1.29), were successfully synthesized when S , S -dibenzyl trithiocarbonate (DTC) was employed as the CTA. Poly(GATA)- b -poly(nBA)- b -poly(GATA) copolymers with 14–58 wt% GATA were prepared and demonstrated excellent thermomechanical properties ( T d ≥ 279 °C). Two well-separated glass transitions near the values for homopolymers of n-BA and GATA (∼−45 °C and ∼100 °C, respectively) were measured by DSC. The triblock with 14% GATA exhibited peel adhesion of 2.31 N cm −1 (when mixed with 30 wt% tackifier) that is superior to many commercial pressure sensitive adhesives (PSAs). Use of 3,5-bis(2-dodecylthiocarbonothioylthio-1oxopropoxy)benzoic acid (BTCBA) as the CTA provided a more efficient route to copolymerize GATA and n-BA. Using BTCBA, poly(GATA)- b -poly(nBA)- b -poly(GATA) triblock copolymers containing 12–25 wt% GATA, with very narrow molar mass distributions ( Đ ≤ 1.08), were prepared. The latter series of triblock copolymers showed excellent thermal stability with T d ≥ 275 °C. Only the T g for the PnBA block was observed by DSC (∼−45 °C), however, phase-separation was confirmed by small-angle X-ray scattering (SAXS) for all of these triblock copolymers. The mechanical behavior of the polymers was investigated by tensile experiments and the triblock with 25% GATA content demonstrated moderate elastomeric properties, 573 kPa stress at break and 171% elongation. This study introduces a new family of glucose-based ABA-type copolymers and demonstrates functionality of a glucose-based feedstock for developing green polymeric materials. 
    more » « less
  2. Abstract

    Conductive adhesives are required for the integration of dissimilar material components to create soft electronic and robotic systems. Here, a heterogeneous liquid metal‐based conductive adhesive is developed that reversibly attaches to diverse surfaces with high stretchability (>100% strain), low modulus (<100 kPa), and strain‐invariant electrical conductivity. This SofT integrated composite with tacK through liquid metal (STICK‐LM) adhesive consists of a heterogeneous graded film with a liquid metal‐rich side that is embossed at prescribed locations for electrical conductivity and an electrically insulating adhesive side for integration. Adhesion behavior is tuned for adhesion energies > 70 Jm2(≈ 25x enhancement over unmodified composites) and described with a viscoelastic analysis, providing design guidelines for controllable yet reversible adhesion in electrically conductive systems. The architecture of STICK‐LM adhesives provides anisotropic and heterogeneous electrical conductivity and enables direct integration into soft functional systems. This is demonstrated with deformable fuses for robotic joints, repositionable electronics that rapidly attach on curvilinear surfaces, and stretchable adhesive conductors with nearly constant electrical resistance. This study provides a methodology for electrically conductive, reversible adhesives for electrical and mechanical integration of multicomponent systems in emerging technologies.

     
    more » « less
  3. ACS (Ed.)
    High functionality of new adhesives based on vinyl monomers from plant oils (POBMs) can be controlled by physico-chemical properties of latexes synthesized from POBMs. This research aims to improve the performance and sustainability of POBM-based latex adhesives. Elaborating on this concept, camelina (CMM) and high oleic soybean oil-based (HOSBM) monomers were incorporated into latex copolymers to evaluate adhesives performance on multiple substrates. Life Cycle Assessment (LCA) method was used as a tool to evaluate the environmental performance of the synthesized biobased latex adhesives. Latex adhesives were synthesized from combination of methyl methacrylate (MMA), butyl acrylate (BA) and POBMs at various monomer ratios. The MMA content in monomer mixture was kept at 55 wt%, while BA (within remaining 45 wt% of the feed) has been gradually replaced by POBM in monomer feed, yielding feasible latex adhesive formulations. Latex adhesives performance was evaluated using peel testing (ASTM D 1876-08) on the multiple substrates. Presence of HOSBM and CMM fragments in latex copolymers improves adhesives peel strength on most substrates. It was found that performance of POBM-based adhesives can be improved by varying adhesive consumption. It was shown that the incorporation of POBMs into latex copolymers enhances hardness of the latex films upon formation of latex networks. LCA results demonstrated a positive environmental impact when BA was replaced with POBM leading to a lower toxicity for latex adhesives overall. To address the hotspots pinpointed by conducting the initial LCA a number of strategies were implemented. The environmental performance of the biobased adhesive was improved by synthesizing POBM using 2-Methyl-tetrahydrofuran – an environmentally friendly alternative of widely used solvent tetrahydrofuran. Additionally, monomer washing step was improved by replacing dichloromethane with hexane, a solvent with a relatively lower environmental impact. Finally, comparison of the several monomers used for synthesis of the adhesive showed that POBM had the lowest negative impact on the environment as well as human health in various categories. In summary, the obtained experimental data demonstrate plant-oil based latexes environmental benefits and potential as adhesives as well as their utility for usage on multiple substrates. 
    more » « less
  4. Abstract

    Berries from the European Mistletoe (Viscum album) possess a sticky tissue called viscin that facilitates adhesion and germination onto host trees. Recent studies of viscin have demonstrated its adhesive capacity on a range of natural and synthetic surfaces including wood, skin, metals, and plastic. Yet, the underlying mechanisms remain poorly understood. Here, an investigation of the adhesive performance of mistletoe viscin is performed, demonstrating its hygroscopic nature and ability to self‐heal following adhesive failure. It is identified that adhesion originates from a water‐soluble adhesive component that can be extracted, isolated, and characterized independently. Lap shear mechanical testing indicates that the mistletoe adhesive extract (MAE) outperforms native viscin tissue, as well as gum arabic and arabinogalactan—common plant‐based adhesives. Furthermore, humidity uptake experiments reveal that MAE can reversibly absorb nearly 100% of its mass in water from the atmosphere. In‐depth spectroscopic and mass spectrometry investigations reveal a composition consisting primarily of an atypical arabinogalactan, with additional sugar alcohols. Finally, several proof‐of‐concept applications are demonstrated using MAE for hygro‐responsive reversible adhesion between various surfaces including skin, plastic, PDMS, and paper, revealing that MAE holds potential as a biorenewable and reusable adhesive for applications in cosmetics, packaging, and potentially, tissue engineering.

     
    more » « less
  5. Abstract

    Impaired wound healing is a common complication for diabetic patients and effective diabetic wound management remains a clinical challenge. Furthermore, a significant problem that contributes to patient morbidity is the suboptimal quality of healed skin, which often leads to reoccurring chronic skin wounds. Herein, a novel compound and biomaterial building block, panthenol citrate (PC), is developed. It has interesting fluorescence and absorbance properties, and it is shown that PC can be used in soluble form as a wash solution and as a hydrogel dressing to address impaired wound healing in diabetes. PC exhibits antioxidant, antibacterial, anti‐inflammatory, and pro‐angiogenic properties, and promotes keratinocyte and dermal fibroblast migration and proliferation. When applied in a splinted excisional wound diabetic rodent model, PC improves re‐epithelialization, granulation tissue formation, and neovascularization. It also reduces inflammation and oxidative stress in the wound environment. Most importantly, it improves the regenerated tissue quality with enhanced mechanical strength and electrical properties. Therefore, PC could potentially improve wound care management for diabetic patients and play a beneficial role in other tissue regeneration applications.

     
    more » « less