skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Steady states in severe plastic deformations and microstructure at normal and high pressure
The main fundamental problem in studying plasticity and microstructure evolution is that they depend on five components of the plastic strain tensor εp , its entire path εp , and pressure p and its path p , which leaves little hope of finding some general laws, especially at severe plastic straining and high pressures. Here, we review the validity of the following hypothesis for quasi-static material behavior after some critical level of cold severe plastic strain and some straining paths: initially isotropic polycrystalline materials behave like perfectly plastic, isotropic, and strain-path-independent with the corresponding limit surface of perfect plasticity and reach steady values of the crystallite/grain size and dislocation density, which are strain- and strain-path-independent. However, there are multiple steady microstructural states and corresponding limit surfaces of perfect plasticity. The main challenge is to find for which classes of loading paths ε path p path and p material behaves along the same limit surface of perfect plasticity and steady microstructural state and for which loading paths p path ε path p and there is a jump to the different limit surface of perfect plasticity and steady microstructural state. Various experimental, computational, and coupled experimental-computational techniques are analyzed, and some controversies and challenges are summarized.  more » « less
Award ID(s):
2246991
PAR ID:
10588550
Author(s) / Creator(s):
Publisher / Repository:
ELSEVIER
Date Published:
Journal Name:
Journal of Materials Research and Technology
Volume:
36
Issue:
C
ISSN:
2238-7854
Page Range / eLocation ID:
382 to 397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Study of the plastic flow, strain-induced phase transformations (PTs), and nanostructure evolution under high pressure is important for producing new nanostructured phases and understanding physical processes. However, these processes depend on an unlimited combination of five plastic strain components and an entire strain path with no hope of fully comprehending. Here, we introduce the rough diamond anvils (rough-DA) to reach maximum friction equal to the yield strength in shear, which allows determination of pressure-dependent yield strength. We apply rough-DA to compression of severely pre-deformed Zr. We found in situ that after severe straining, crystallite size and dislocation density of α and ω-Zr are getting pressure-, strain- and strain-path-independent, reach steady values before and after PT, and depend solely on the volume fraction of ω-Zr during PT. Immediately after completing PT, ω-Zr behaves like perfectly plastic, isotropic, and strain-path-independent. Rough-DA produces a steady nanostructure in α-Zr with lower crystallite size and larger dislocation density than smooth diamonds. This leads to a record minimum pressure (0.67 GPa) for α-ω PT. Kinetics of strain-induced PT, in addition to plastic strain, unexpectedly depends on time. The obtained results significantly enrich the fundamental understanding of plasticity, PTs, and nanostructure, and create new opportunities in material design, synthesis, and processing of nanostructured materials by coupling severe plastic deformations and PT at low pressure. 
    more » « less
  2. Severe plastic deformations under high pressure are used to produce nanostructured materials but were studied ex-situ. We introduce rough diamond anvils to reach maximum friction equal to yield strength in shear and perform the first in-situ study of the evolution of the pressure-dependent yield strength and nanostructural parameters for severely pre-deformed Zr. ω-Zr behaves like perfectly plastic, isotropic, and strain-path-independent. This is related to reaching steady values of the crystallite size and dislocation density, which are pressure-, strain- and strain-path-independent. However, steady states for α-Zr obtained with smooth and rough anvils are different, which causes major challenge in plasticity theory. 
    more » « less
  3. Severe plastic deformations under high pressure are used to produce nanostructured materials but were studied ex-situ. Rough diamond anvils are introduced to reach maximum friction equal to yield strength in shear and the first in-situ study of the evolution of the pressure-dependent yield strength and radial distribution of nano structural parameters are performed for severely pre-deformed Zr.ω-Zr behaves like perfectly plastic, isotropic, and strain-path-independent and reaches steady values of the crystallite size and dislocation density, which are pressure-, strain- and strain-path-independent. However, steady states forα-Zr obtained with smooth and rough anvils are different, causing major challenge in plasticity theory. 
    more » « less
  4. Study of the plastic flow and strain-induced phase transformations (PTs) under high pressure with diamond anvils is important for material and geophysics. We introduce rough diamond anvils and apply them to Zr, which drastically change the plastic flow, microstructure, and PTs. Multiple steady microstructures independent of pressure, plastic strain, and strain path are reached. Maximum friction equal to the yield strength in shear is achieved. This allows determination of the pressure-dependence of the yield strength and proves that omega-Zr behaves like perfectly plastic, isotropic, and strain path-independent immediately after PT. Record minimum pressure for alpha-omega PT was identified. Kinetics of strain-induced PT depends on plastic strain and time. Crystallite size and dislocation density in omega-Zr during PT depend solely on the volume fraction of omega-Zr. 
    more » « less
  5. Study of the plastic flow and strain-induced phase transformations (PTs) under high pressure with diamond anvils is important for material and geophysics. We introduce rough diamond anvils and apply them to Zr, which drastically change the plastic flow, microstructure, and PTs. Multiple steady microstructures independent of pressure, plastic strain, and strain path are reached. Maximum friction equal to the yield strength in shear is achieved. This allows determination of the pressure-dependence of the yield strength and proves that ω-Zr behaves like perfectly plastic, isotropic, and strain path-independent immediately after PT. Record minimum pressure for α-ω PT was identified. Kinetics of strain-induced PT depends on plastic strain and time. Crystallite size and dislocation density in ω-Zr during PT depend solely on the volume fraction of ω-Zr. 
    more » « less