We present an experimental and simulation-based investigation of the temporal evolution of light emission from a thin, laser-ionized helium plasma source. We demonstrate an analytic model to calculate the approximate scaling of the time-integrated, on-axis light emission with the initial plasma density and temperature, supported by the experiment, which enhances the understanding of plasma light measurement for plasma wakefield accelerator (PWFA) plasma sources. Our model simulates the plasma density and temperature using a split-step Fourier code and a particle-in-cell code. A fluid simulation is then used to model the plasma and neutral density, and the electron temperature as a function of time and position. We then show the numerical results of the space-and-time-resolved light emission and that collisional excitation is the dominant source of light emission. We validate our model by measuring the light emitted by a laser-ionized plasma using a novel statistical method capable of resolving the nanosecond-scale temporal dynamics of the plasma light using a cost-effective camera with microsecond-scale timing jitter. This method is ideal for deployment in the high radiation environment of a particle accelerator that precludes the use of expensive nanosecond-gated cameras. Our results show that our models can effectively simulate the dynamics of a thin, laser-ionized plasma source. In addition, this work provides a detailed understanding of the plasma light measurement, which is one of the few diagnostic signals available for the direct measurement of PWFA plasma sources.
more »
« less
This content will become publicly available on December 1, 2025
The impact of electron inertia on collisional laser absorption for high energy density plasmas
High-power lasers are at the forefront of science in many domains. While their fields are still far from reaching the Schwinger limit, they have been used in extreme regimes, to successfully accelerate particles at high energies, or to reproduce phenomena observed in astrophysical settings. However, our understanding of laser–plasma interactions is limited by numerical simulations, which are very expensive to run as short temporal and spatial scales need to be resolved explicitly. Under such circumstances, a non-collisional approach to model laser–plasma interactions becomes numerically expensive. Even a collisional approach, modeling the electrons and ions as independent fluids, is slow in practice. In both cases, the limitation comes from a direct computation of electron motion. In this work, we show how the generalized Ohm's law captures collisional absorption phenomena through the macroscopic interactions of laser fields, electron flows, and ion dynamics. This approach replicates several features usually associated with explicit electron motion, such as cutoff density, reflection, and absorption. As the electron dynamics are now solved implicitly, the spatial and temporal scales of this model fit well between multi-fluid and standard magnetohydrodynamics scales, enabling the study of a new class of problems that would be too expensive to solve numerically with other methods.
more »
« less
- Award ID(s):
- 1943939
- PAR ID:
- 10588558
- Publisher / Repository:
- American Institue of Physics
- Date Published:
- Journal Name:
- Physics of Plasmas
- Volume:
- 31
- Issue:
- 12
- ISSN:
- 1070-664X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Magnetized plasma interactions are ubiquitous in astrophysical and laboratory plasmas. Various physical effects have been shown to be important within colliding plasma flows influenced by opposing magnetic fields, however, experimental verification of the mechanisms within the interaction region has remained elusive. Here we discuss a laser-plasma experiment whereby experimental results verify that Biermann battery generated magnetic fields are advected by Nernst flows and anisotropic pressure effects dominate these flows in a reconnection region. These fields are mapped using time-resolved proton probing in multiple directions. Various experimental, modelling and analytical techniques demonstrate the importance of anisotropic pressure in semi-collisional, high- β plasmas, causing a reduction in the magnitude of the reconnecting fields when compared to resistive processes. Anisotropic pressure dynamics are crucial in collisionless plasmas, but are often neglected in collisional plasmas. We show pressure anisotropy to be essential in maintaining the interaction layer, redistributing magnetic fields even for semi-collisional, high energy density physics (HEDP) regimes.more » « less
-
We present time-resolved interferometry to simultaneously measure plasma densities and electron collision times for strong field laser-matter interactions. First, an intense femtosecond pump pulse generates plasma in a solid and second, a weak 800-nm femtosecond probe traverses the pump-induced plasma and is sent to an interferometer with controlled time delay between pump and probe. By analyzing the interferograms using Fourie methods, we can extract plasma densities and electron collision times in plasma simultaneously with micrometer spatial and femtosecond temporal resolutions. Using the technique, we study the plasma dynamics when a wavelength-varied (λ= 1.2-2.3 μm) pump pulse undergoes laser filamentation in solid materials.more » « less
-
Abstract High-intensity, short-pulse lasers are crucial for generating energetic electrons that produce high-energy-density (HED) states in matter, offering potential applications in igniting dense fusion fuels for fast ignition laser fusion. High-density targets heated by these electrons exhibit spatially non-uniform and highly transient conditions, which have been challenging to characterize due to limitations in diagnostics that provide simultaneous high spatial and temporal resolution. Here, we employ an X-ray Free Electron Laser (XFEL) to achieve spatiotemporally resolved measurements at sub-micron and femtosecond scales on a solid-density copper foil heated by laser-driven fast electrons. Our X-ray transmission imaging reveals the formation of a solid-density hot plasma localized to the laser spot size, surrounded by Fermi degenerate, warm dense matter within a picosecond, and the energy relaxation occurring within the hot plasma over tens of picoseconds. These results validate 2D particle-in-cell simulations incorporating atomic processes and provide insights into the energy transfer mechanisms beyond current simulation capabilities. This work significantly advances our understanding of rapid fast electron heating and energy relaxation in solid-density matter, serving as a key stepping stone towards efficient high-density plasma heating and furthering the fields of HED science and inertial fusion energy research using intense, short-pulse lasers.more » « less
-
In plasma discharges, the acceleration of electrons by a fast varying electric field and the subsequent collisional electron energy transfer determines the plasma dynamics, chemical reactivity, and breakdown. Current in situ electric field measurements require reconstruction of the temporal profile over many observations. However, such methods are unsuitable for non-repetitive and unstable plasmas. Here, we present a method for creating “movies” of dynamic electric fields in a single acquisition at sample rates of 500 × 106 fps. This ultrafast diagnostic was demonstrated in radio frequency electric fields between two parallel plates in air, as well as in Ar nanosecond-pulsed single-sided dielectric barrier discharges.more » « less
An official website of the United States government
