skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An information-theoretic approach to extracting climate signals from deep polar ice cores
Paleoclimate records are rich sources of information about the past history of the Earth system. Information theory provides a new means for studying these records. We demonstrate that weighted permutation entropy of water-isotope data from the West Antarctica Ice Sheet (WAIS) Divide ice core reveals meaningful climate signals in this record. We find that this measure correlates with accumulation (meters of ice equivalent per year) and may record the influence of geothermal heating effects in the deepest parts of the core. Dansgaard-Oeschger and Antarctic Isotope Maxima events, however, do not appear to leave strong signatures in the information record, suggesting that these abrupt warming events may actually be predictable features of the climate’s dynamics. While the potential power of information theory in paleoclimatology is significant, the associated methods require well-dated and high-resolution data. The WAIS Divide core is the first paleoclimate record that can support this kind of analysis. As more high-resolution records become available, information theory could become a powerful forensic tool in paleoclimate science.  more » « less
Award ID(s):
1807478 1807522
PAR ID:
10588626
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Chaos: An Interdisciplinary Journal of Nonlinear Science
Volume:
29
Issue:
10
ISSN:
1054-1500
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ice cores contain stratigraphic records of microbial cells, buried through thousands of years of snow accumulation and spanning significant climatic periods. It is well established that microorganisms are transported to and preserved within the West Antarctic Ice Sheet. From the total assemblage of microorganisms that land on the ice sheet, we do not know how or if microorganisms survive burial and persist long-term in glacial ice equally. We cannot accurately interpret microbial cell stratigraphic records or utilize these cellular records as proxies until we understand post-depositional processes and the genomic adaptations of microbial cells in glacial ice. Here, we quantify cell concentrations in meltwater from four flow paths of a continuous flow analysis melter system in order to evaluate the efficacy of these flow paths for the successful collection of intact cells archived in ice cores. Using this information, we melted eight sections from the WAIS Divide ice core and quantified the cell concentrations, assayed the viability of the microbial cells, and sorted individual cells for genome sequencing. We will present preliminary data from the flow path cell recovery experiment, and genomic and viability results from the WAIS Divide ice core, with the hope to stimulate further discussion around single cell genomes and how they can be leveraged to complement paleoclimate information from ice cores. 
    more » « less
  2. null (Ed.)
    Abstract. In 2013 an ice core was recovered from Roosevelt Island, an ice dome between two submarine troughs carved by paleo-ice-streams in the Ross Sea, Antarctica. The ice core is part of the Roosevelt Island Climate Evolution (RICE) project and provides new information about the past configuration of the West Antarctic Ice Sheet (WAIS) and its retreat during the last deglaciation. In this work we present the RICE17 chronology, which establishes the depth–age relationship for the top 754 m of the 763 m core. RICE17 is a composite chronology combining annual layer interpretations for 0–343 m (Winstrup et al., 2019) with new estimates for gas and ice ages based on synchronization of CH4 and δ18Oatm records to corresponding records from the WAIS Divide ice core and by modeling of the gas age–ice age difference. Novel aspects of this work include the following: (1) an automated algorithm for multiproxy stratigraphic synchronization of high-resolution gas records; (2) synchronization using centennial-scale variations in methane for pre-anthropogenic time periods (60–720 m, 1971 CE to 30 ka), a strategy applicable for future ice cores; and (3) the observation of a continuous climate record back to ∼65 ka providing evidence that the Roosevelt Island Ice Dome was a constant feature throughout the last glacial period. 
    more » « less
  3. Abstract The West Antarctic Ice Sheet (WAIS) may have collapsed during the last interglacial period, between 132 000 and 116 000 years ago. The changes in topography resulting from WAIS collapse would be accompanied by significant changes in Antarctic surface climate, atmospheric circulation, and ocean conditions. Evidence of these changes may be recorded in water-isotope ratios in precipitation archived in the ice. We conduct high-resolution simulations with an isotope-enabled version of the Weather Research and Forecasting Model over Antarctica, with boundary conditions provided by climate model simulations with both present-day and lowered WAIS topography. The results show that while there is significant spatial variability, WAIS collapse would cause detectable isotopic changes at several locations where ice-core records have been obtained or could be obtained in the future. The most robust signals include elevatedδ18O at SkyTrain Ice Rise in West Antarctica and elevated deuterium excess andδ18O at Hercules Dome in East Antarctica. A combination of records from multiple sites would provide constraints on the timing, rate, and magnitude of past WAIS collapse. 
    more » « less
  4. Abstract. Paleoclimate archives, such as high-resolution ice core records, provide ameans to investigate past climate variability. Until recently, the Law Dome(Dome Summit South site) ice core record remained one of fewmillennial-length high-resolution coastal records in East Antarctica. A newice core drilled in 2017/2018 at Mount Brown South, approximately 1000 kmwest of Law Dome, provides an additional high-resolution record that willlikely span the last millennium in the Indian Ocean sector of EastAntarctica. Here, we compare snow accumulation rates and sea saltconcentrations in the upper portion (∼ 20 m) of three MountBrown South ice cores and an updated Law Dome record over the period1975–2016. Annual sea salt concentrations from the Mount Brown South siterecord preserve a stronger signal for the El Niño–Southern Oscillation(ENSO; austral winter and spring, r = 0.533, p < 0.001, Multivariate El Niño Index) compared to a previously defined Law Dome record of summer sea salt concentrations (November–February, r = 0.398, p = 0.010, SouthernOscillation Index). The Mount Brown South site record and Law Dome recordpreserve inverse signals for the ENSO, possibly due to longitudinalvariability in meridional transport in the southern Indian Ocean, althoughfurther analysis is needed to confirm this. We suggest that ENSO-related seasurface temperature anomalies in the equatorial Pacific drive atmosphericteleconnections in the southern mid-latitudes. These anomalies areassociated with a weakening (strengthening) of regional westerly winds tothe north of Mount Brown South that correspond to years of low (high) seasalt deposition at Mount Brown South during La Niña (El Niño)events. The extended Mount Brown South annual sea salt record (whencomplete) may offer a new proxy record for reconstructions of the ENSO overthe recent millennium, along with improved understanding of regionalatmospheric variability in the southern Indian Ocean, in addition to thatderived from Law Dome. 
    more » « less
  5. Abstract. Here we present a newly developed ice core gas-phase proxy that directlysamples a component of the large-scale atmospheric circulation:synoptic-scale pressure variability. Surface pressure changes weakly disrupt gravitational isotopic settling in the firn layer, which is recorded in krypton-86 excess (86Krxs). The 86Krxs may therefore reflect the time-averaged synoptic pressure variability over several years (site “storminess”), but it likely cannot record individual synoptic events as ice core gas samples typically average over several years. We validate 86Krxs using late Holocene ice samples from 11 Antarctic ice cores and 1 Greenland ice core that collectively represent a wide range of surface pressure variability in the modern climate. We find a strong spatial correlation (r=-0.94, p<0.01) between site average 86Krxs and time-averaged synoptic variability from reanalysis data. The main uncertainties in the analysis are the corrections for gas loss and thermal fractionation and the relatively large scatter in the data. Limited scientific understanding of the firn physics and potential biases of 86Krxs require caution in interpreting this proxy at present. We show that Antarctic 86Krxs appears to be linked to the position of the Southern Hemisphere eddy-driven subpolar jet (SPJ), with a southern position enhancing pressure variability. We present a 86Krxs record covering the last 24 kyr from the West Antarctic Ice Sheet (WAIS) Divide ice core. Based on the empirical spatial correlation of synoptic activity and 86Krxs at various Antarctic sites, we interpret this record to show that West Antarctic synoptic activity is slightly below modern levels during the Last Glacial Maximum (LGM), increases during the Heinrich Stadial 1 and Younger Dryas North Atlantic cold periods, weakens abruptly at the Holocene onset, remains low during the early and mid-Holocene, and gradually increases to its modern value. The WAIS Divide 86Krxs record resembles records of monsoon intensity thought to reflect changes in the meridional position of the Intertropical Convergence Zone (ITCZ) on orbital and millennial timescales such that West Antarctic storminess is weaker when the ITCZ is displaced northward and stronger when it is displaced southward. We interpret variations in synoptic activity as reflecting movement of the South Pacific SPJ in parallel to the ITCZ migrations, which is the expected zonal mean response of the eddy-driven jet in models and proxy data. Past changes to Pacific climate and the El Niño–Southern Oscillation (ENSO) may amplify the signal of the SPJ migration. Our interpretation is broadly consistent with opal flux records from the Pacific Antarctic zone thought to reflect wind-driven upwelling. We emphasize that 86Krxs is a new proxy, and more work is called for to confirm, replicate, and better understand these results; until such time, our conclusions regarding past atmospheric dynamics remainspeculative. Current scientific understanding of firn air transport andtrapping is insufficient to explain all the observed variations in86Krxs. A list of suggested future studies is provided. 
    more » « less