skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: El Niño–Southern Oscillation signal in a new East Antarctic ice core, Mount Brown South
Abstract. Paleoclimate archives, such as high-resolution ice core records, provide ameans to investigate past climate variability. Until recently, the Law Dome(Dome Summit South site) ice core record remained one of fewmillennial-length high-resolution coastal records in East Antarctica. A newice core drilled in 2017/2018 at Mount Brown South, approximately 1000 kmwest of Law Dome, provides an additional high-resolution record that willlikely span the last millennium in the Indian Ocean sector of EastAntarctica. Here, we compare snow accumulation rates and sea saltconcentrations in the upper portion (∼ 20 m) of three MountBrown South ice cores and an updated Law Dome record over the period1975–2016. Annual sea salt concentrations from the Mount Brown South siterecord preserve a stronger signal for the El Niño–Southern Oscillation(ENSO; austral winter and spring, r = 0.533, p < 0.001, Multivariate El Niño Index) compared to a previously defined Law Dome record of summer sea salt concentrations (November–February, r = 0.398, p = 0.010, SouthernOscillation Index). The Mount Brown South site record and Law Dome recordpreserve inverse signals for the ENSO, possibly due to longitudinalvariability in meridional transport in the southern Indian Ocean, althoughfurther analysis is needed to confirm this. We suggest that ENSO-related seasurface temperature anomalies in the equatorial Pacific drive atmosphericteleconnections in the southern mid-latitudes. These anomalies areassociated with a weakening (strengthening) of regional westerly winds tothe north of Mount Brown South that correspond to years of low (high) seasalt deposition at Mount Brown South during La Niña (El Niño)events. The extended Mount Brown South annual sea salt record (whencomplete) may offer a new proxy record for reconstructions of the ENSO overthe recent millennium, along with improved understanding of regionalatmospheric variability in the southern Indian Ocean, in addition to thatderived from Law Dome.  more » « less
Award ID(s):
1804121 1803946
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Climate of the Past
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The Indian Ocean presents two distinct climate regimes. The north Indian Ocean is dominated by the monsoons, whereas the seasonal reversal is less pronounced in the south. The prevailing wind pattern produces upwelling along different parts of the coast in both hemispheres during different times of the year. Additionally, dynamical processes and eddies either cause or enhance upwelling. This paper reviews the phenomena of upwelling along the coast of the Indian Ocean extending from the tip of South Africa to the southern tip of the west coast of Australia. Observed features, underlying mechanisms, and the impact of upwelling on the ecosystem are presented. In the Agulhas Current region, cyclonic eddies associated with Natal pulses drive slope upwelling and enhance chlorophyll concentrations along the continental margin. The Durban break-away eddy spun up by the Agulhas upwells cold nutrient-rich water. Additionally, topographically induced upwelling occurs along the inshore edges of the Agulhas Current. Wind-driven coastal upwelling occurs along the south coast of Africa and augments the dynamical upwelling in the Agulhas Current. Upwelling hotspots along the Mozambique coast are present in the northern and southern sectors of the channel and are ascribed to dynamical effects of ocean circulation in addition to wind forcing. Interaction of mesoscale eddies with the western boundary, dipole eddy pair interactions, and passage of cyclonic eddies cause upwelling. Upwelling along the southern coast of Madagascar is caused by the Ekman wind-driven mechanism and by eddy generation and is inhibited by the Southwest Madagascar Coastal Current. Seasonal upwelling along the East African coast is primarily driven by the northeast monsoon winds and enhanced by topographically induced shelf breaking and shear instability between the East African Coastal Current and the island chains. The Somali coast presents a strong case for the classical Ekman type of upwelling; such upwelling can be inhibited by the arrival of deeper thermocline signals generated in the offshore region by wind stress curl. Upwelling is nearly uniform along the coast of Arabia, caused by the alongshore component of the summer monsoon winds and modulated by the arrival of Rossby waves generated in the offshore region by cyclonic wind stress curl. Along the west coast of India, upwelling is driven by coastally trapped waves together with the alongshore component of the monsoon winds. Along the southern tip of India and Sri Lanka, the strong Ekman transport drives upwelling. Upwelling along the east coast of India is weak and occurs during summer, caused by alongshore winds. In addition, mesoscale eddies lead to upwelling, but the arrival of river water plumes inhibits upwelling along this coast. Southeasterly winds drive upwelling along the coast of Sumatra and Java during summer, with Kelvin wave propagation originating from the equatorial Indian Ocean affecting the magnitude and extent of the upwelling. Both El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events cause large variability in upwelling here. Along the west coast of Australia, which is characterized by the anomalous Leeuwin Current, southerly winds can cause sporadic upwelling, which is prominent along the southwest, central, and Gascoyne coasts during summer. Open-ocean upwelling in the southern tropical Indian Ocean and within the Sri Lanka Dome is driven primarily by the wind stress curl but is also impacted by Rossby wave propagations. Upwelling is a key driver enhancing biological productivity in all sectors of the coast, as indicated by enhanced sea surface chlorophyll concentrations. Additional knowledge at varying levels has been gained through in situ observations and model simulations. In the Mozambique Channel, upwelling simulates new production and circulation redistributes the production generated by upwelling and mesoscale eddies, leading to observations of higher ecosystem impacts along the edges of eddies. Similarly, along the southern Madagascar coast, biological connectivity is influenced by the transport of phytoplankton from upwelling zones. Along the coast of Kenya, both productivity rates and zooplankton biomass are higher during the upwelling season. Along the Somali coast, accumulation of upwelled nutrients in the northern part of the coast leads to spatial heterogeneity in productivity. In contrast, productivity is more uniform along the coasts of Yemen and Oman. Upwelling along the west coast of India has several biogeochemical implications, including oxygen depletion, denitrification, and high production of CH4 and dimethyl sulfide. Although weak, wind-driven upwelling leads to significant enhancement of phytoplankton in the northwest Bay of Bengal during the summer monsoon. Along the Sumatra and Java coasts, upwelling affects the phytoplankton composition and assemblages. Dissimilarities in copepod assemblages occur during the upwelling periods along the west coast of Australia. Phytoplankton abundance characterizes inshore edges of the slope during upwelling season, and upwelling eddies are associated with krill abundance. The review identifies the northern coast of the Arabian Sea and eastern coasts of the Bay of Bengal as the least observed sectors. Additionally, sustained long-term observations with high temporal and spatial resolutions along with high-resolution modelling efforts are recommended for a deeper understanding of upwelling, its variability, and its impact on the ecosystem. 
    more » « less
  2. The so-called “4.2 ka event” is a dramatic climate oscillation that impacted many areas of the mid-to-low latitudes spanning roughly 4.2-3.9 ka (ka = thousands of years ago). Records of this event have been identified on every continent except Antarctica, with clear evidence of precipitation being affected on a large scale. Subtropical and tropical regions of Africa and Asia experienced drought, while mid-latitude areas of Africa and Europe saw anomalously wet conditions. The 4.2 ka event is argued to have had a substantial cultural impact, including the collapse of numerous dynasties and cultures such as in the Indus valley and south-central China, as well as parts of Mesopotamia, northeastern Africa, and across parts of southeast Asia. However, despite its wide geographic extent and societal importance, a great deal remains unknown about the 4.2 ka event, its global effects, and its origins. The apparent lack of a climate anomaly in the polar regions at 4.2 ka suggests it may have originated in the tropics, possibly through the El Niño-Southern Oscillation (ENSO). I analyzed a stalagmite (SB-18) from Siddha Cave, located in the Pokhara Valley of central Nepal (28.0N, 84.0E elev.~600 meters), a region that receives 80% of its annual 1500 mm of rainfall from the Indian Summer Monsoon (ISM). In contrast to many tropical stalagmite records, which use oxygen isotopes to track past monsoon rainfall, I focused on carbon isotopes because at Siddha Cave, oxygen isotopes in rainfall do not have a strong correlation to rainfall amount (the so-called “amount effect”). Carbon isotopes respond to hydroclimate variability through prior aragonite precipitation (PAP), which reflects out-gassing of carbon dioxide and precipitation of aragonite in voids in the bedrock above the cave. This process preferentially removes 12C from the infiltrating water that subsequently migrates downward into the cave. During periods with less rainfall, open spaces in the bedrock are more likely to be dewatered, thereby allowing for more prior aragonite precipitation. In order to ensure that carbon isotopes accurately capture ISM rainfall variability, I also examined uranium abundances in the same stalagmite. Changes in the concentration of uranium are also driven by PAP: uranium is incorporated into aragonite preferentially over dripwater and thus PAP reduces the amount of uranium in dripwater, thereby decreasing uranium in the underlying stalagmite. Carbon isotopes and U abundances in SB-18 suggest that central Nepal experienced anomalously high rainfall during the 4.2 ka event, in contrast with the majority of lower latitude sites around the globe, including a cave record from northeastern India, that record a reduction in rainfall at this time. This rainfall dipole provides an important climatic fingerprint that allows us to investigate the origins of the 4.2 ka event through analysis of modern climate data, including rainfall anomalies associated with ENSO. 
    more » « less
  3. Abstract

    Large uncertainties exist in climate model projections of the Asian summer monsoon (ASM). The El Niño‐Southern Oscillation (ENSO) is an important modulator of the ASM, but the ENSO‐ASM teleconnection is not stationary. Furthermore, teleconnections between ENSO and the East Asian versus South Asian subcomponents of the ASM exhibit distinct characteristics. Therefore, understanding the variability of the ENSO‐ASM teleconnection is critical for anticipating future variations in ASM intensity. To this end, we here use paleoclimate records to extend temporal coverage beyond the instrumental era by millennia. Recently, data assimilation techniques have been applied for the last millennium, which facilitates physically consistent, globally gridded climate reconstructions informed by paleoclimate observations. We use these novel data assimilation products to investigate variations in the ENSO‐ASM relationship over the last 1,000 years. We find that correlations between ENSO and ASM indices are mostly negative in the last millennium, suggesting that strong ASM years are often associated with La Niña events. During periods of weak correlations between ENSO and the East Asian summer monsoon, we observe an El Niño‐like sea surface temperature (SST) pattern in the Pacific. Additionally, SST patterns associated with periods of weak correlations between ENSO and South Asian summer monsoon rainfall are not consistent among data assimilation products. This underscores the importance of developing more precipitation‐sensitive paleoclimate proxies in the Indian subcontinental realm over the last millennium. Our study serves as a baseline for future appraisals of paleoclimate assimilation products and an example of informing our understanding of decadal‐scale ENSO‐ASM teleconnection variability using paleoclimate data sets.

    more » « less
  4. Abstract

    Recent studies have revealed robust in‐phase relationships between El Niño–Southern Oscillation (ENSO) and Asian Monsoon precipitation δ18O values (i.e., warm ENSO events with high δ18O values), and this relationship has been used in an attempt to reconstruct past ENSO activity. However, whether this relationship holds in the past is unknown. Here we use precipitation δ18O data from Hong Kong (East Asia) and Bangkok (Southeast Asia) and an ice core δ18O record from Dasuopu glacier (South Asia) to examine the δ18O‐ENSO relationship across two recent climate shifts that occurred during the winters of 1976/1977 and 1988/1989. On an annual scale, the δ18O‐ENSO relationship is weak prior to 1977 and strongest after 1988. We show that the changing δ18O‐ENSO relationship mainly originates from changes in the dry season isotope/climate relationship (which is significant only after 1988), whereas the rainy season relationship is relatively stable. We confirm that, consistent with earlier work on the rainy season, the significant δ18O‐ENSO relationship in the dry season post‐1988 is associated with ENSO's influence on regional convection (Bay of Bengal to South China Sea region). We suggest the insignificant dry season relationship prior to 1989 is due to limited ENSO impacts on convection in the Bay of Bengal to South China Sea region, which is supported by the insignificant relationship between ENSO and vertical velocity at 500 hPa. These findings suggest that without additional constraints, systematic variability in isotope/climate relationships will lead to large uncertainties in ENSO reconstructions based on Asian Monsoon region δ18O data.

    more » « less
  5. Abstract. Here we present a newly developed ice core gas-phase proxy that directlysamples a component of the large-scale atmospheric circulation:synoptic-scale pressure variability. Surface pressure changes weakly disrupt gravitational isotopic settling in the firn layer, which is recorded in krypton-86 excess (86Krxs). The 86Krxs may therefore reflect the time-averaged synoptic pressure variability over several years (site “storminess”), but it likely cannot record individual synoptic events as ice core gas samples typically average over several years. We validate 86Krxs using late Holocene ice samples from 11 Antarctic ice cores and 1 Greenland ice core that collectively represent a wide range of surface pressure variability in the modern climate. We find a strong spatial correlation (r=-0.94, p<0.01) between site average 86Krxs and time-averaged synoptic variability from reanalysis data. The main uncertainties in the analysis are the corrections for gas loss and thermal fractionation and the relatively large scatter in the data. Limited scientific understanding of the firn physics and potential biases of 86Krxs require caution in interpreting this proxy at present. We show that Antarctic 86Krxs appears to be linked to the position of the Southern Hemisphere eddy-driven subpolar jet (SPJ), with a southern position enhancing pressure variability. We present a 86Krxs record covering the last 24 kyr from the West Antarctic Ice Sheet (WAIS) Divide ice core. Based on the empirical spatial correlation of synoptic activity and 86Krxs at various Antarctic sites, we interpret this record to show that West Antarctic synoptic activity is slightly below modern levels during the Last Glacial Maximum (LGM), increases during the Heinrich Stadial 1 and Younger Dryas North Atlantic cold periods, weakens abruptly at the Holocene onset, remains low during the early and mid-Holocene, and gradually increases to its modern value. The WAIS Divide 86Krxs record resembles records of monsoon intensity thought to reflect changes in the meridional position of the Intertropical Convergence Zone (ITCZ) on orbital and millennial timescales such that West Antarctic storminess is weaker when the ITCZ is displaced northward and stronger when it is displaced southward. We interpret variations in synoptic activity as reflecting movement of the South Pacific SPJ in parallel to the ITCZ migrations, which is the expected zonal mean response of the eddy-driven jet in models and proxy data. Past changes to Pacific climate and the El Niño–Southern Oscillation (ENSO) may amplify the signal of the SPJ migration. Our interpretation is broadly consistent with opal flux records from the Pacific Antarctic zone thought to reflect wind-driven upwelling. We emphasize that 86Krxs is a new proxy, and more work is called for to confirm, replicate, and better understand these results; until such time, our conclusions regarding past atmospheric dynamics remainspeculative. Current scientific understanding of firn air transport andtrapping is insufficient to explain all the observed variations in86Krxs. A list of suggested future studies is provided. 
    more » « less