Abstract Photospheric magnetic field parameters are frequently used to analyze and predict solar events. Observation of these parameters over time, i.e., representing solar events by multivariate time-series (MVTS) data, can determine relationships between magnetic field states in active regions and extreme solar events, e.g., solar flares. We can improve our understanding of these events by selecting the most relevant parameters that give the highest predictive performance. In this study, we propose a two-step incremental feature selection method for MVTS data using a deep-learning model based on long short-term memory (LSTM) networks. First, each MVTS feature (magnetic field parameter) is evaluated individually by a univariate sequence classifier utilizing an LSTM network. Then, the top performing features are combined to produce input for an LSTM-based multivariate sequence classifier. Finally, we tested the discrimination ability of the selected features by training downstream classifiers, e.g., Minimally Random Convolutional Kernel Transform and support vector machine. We performed our experiments using a benchmark data set for flare prediction known as Space Weather Analytics for Solar Flares. We compared our proposed method with three other baseline feature selection methods and demonstrated that our method selects more discriminatory features compared to other methods. Due to the imbalanced nature of the data, primarily caused by the rarity of minority flare classes (e.g., the X and M classes), we used the true skill statistic as the evaluation metric. Finally, we reported the set of photospheric magnetic field parameters that give the highest discrimination performance in predicting flare classes. 
                        more » 
                        « less   
                    This content will become publicly available on March 1, 2026
                            
                            Solar Flare Prediction Using Multivariate Time Series of Photospheric Magnetic Field Parameters: A Comparative Analysis of Vector, Time Series, and Graph Data Representations
                        
                    
    
            The purpose of this study is to provide a comprehensive resource for the selection of data representations for machine learning-oriented models and components in solar flare prediction tasks. Major solar flares occurring in the solar corona and heliosphere can bring potential destructive consequences, posing significant risks to astronauts, space stations, electronics, communication systems, and numerous technological infrastructures. For this reason, the accurate detection of major flares is essential for mitigating these hazards and ensuring the safety of our technology-dependent society. In response, leveraging machine learning techniques for predicting solar flares has emerged as a significant application within the realm of data science, relying on sensor data collected from solar active region photospheric magnetic fields by space- and ground-based observatories. In this research, three distinct solar flare prediction strategies utilizing the photospheric magnetic field parameter-based multivariate time series dataset are evaluated, with a focus on data representation techniques. Specifically, we examine vector-based, time series-based, and graph-based approaches to identify the most effective data representation for capturing key characteristics of the dataset. The vector-based approach condenses multivariate time series into a compressed vector form, the time series representation leverages temporal patterns, and the graph-based method models interdependencies between magnetic field parameters. The results demonstrate that the vector representation approach exhibits exceptional robustness in predicting solar flares, consistently yielding strong and reliable classification outcomes by effectively encapsulating the intricate relationships within photospheric magnetic field data when coupled with appropriate downstream machine learning classifiers. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10588658
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Remote Sensing
- Volume:
- 17
- Issue:
- 6
- ISSN:
- 2072-4292
- Page Range / eLocation ID:
- 1075
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Solar flares are characterized by sudden bursts of electromagnetic radiation from the Sun’s surface, and are caused by the changes in magnetic field states in active solar regions. Earth and its surrounding space environment can suffer from various negative impacts caused by solar flares, ranging from electronic communication disruption to radiation exposure-based health risks to astronauts. In this paper, we address the solar flare prediction problem from magnetic field parameter-based multivariate time series (MVTS) data using multiple state-of-the-art machine learning classifiers that include MINImally RandOm Convolutional KErnel Transform (MiniRocket), Support Vector Machine (SVM), Canonical Interval Forest (CIF), Multiple Representations Sequence Learner (Mr-SEQL), and a Long Short-Term Memory (LSTM)-based deep learning model. Our experiment is conducted on the Space Weather Analytics for Solar Flares (SWAN-SF) benchmark data set, which is a partitioned collection of MVTS data of active region magnetic field parameters spanning over nine years of operation of the Solar Dynamics Observatory (SDO). The MVTS instances of the SWAN-SF dataset are labeled by GOES X-ray flux-based flare class labels, and attributed to extreme class imbalance because of the rarity of the major flaring events (e.g., X and M). As a performance validation metric in this class-imbalanced dataset, we used the True Skill Statistic (TSS) score. Finally, we demonstrate the advantages of the MVTS learning algorithm MiniRocket, which outperformed the aforementioned classifiers without the need for essential data preprocessing steps such as normalization, statistical summarization, and class imbalance handling heuristics.more » « less
- 
            Over the past two decades, machine learning and deep learning techniques for forecasting solar flares have generated great impact due to their ability to learn from a high dimensional data space. However, lack of high quality data from flaring phenomena becomes a constraining factor for such tasks. One of the methods to tackle this complex problem is utilizing trained classifiers with multivariate time series of magnetic field parameters. In this work, we compare the exceedingly popular multivariate time series classifiers applying deep learning techniques with commonly used machine learning classifiers (i.e., SVM). We intend to explore the role of data augmentation on time series oriented flare prediction techniques, specifically the deep learning-based ones. We utilize four time series data augmentation techniques and couple them with selected multivariate time series classifiers to understand how each of them affects the outcome. In the end, we show that the deep learning algorithms as well as augmentation techniques improve our classifiers performance. The resulting classifiers’ performance after augmentation outplayed the traditional flare forecasting techniques.more » « less
- 
            Abstract We introduce and make openly accessible a comprehensive, multivariate time series (MVTS) dataset extracted from solar photospheric vector magnetograms in Spaceweather HMI Active Region Patch (SHARP) series. Our dataset also includes a cross-checked NOAA solar flare catalog that immediately facilitates solar flare prediction efforts. We discuss methods used for data collection, cleaning and pre-processing of the solar active region and flare data, and we further describe a novel data integration and sampling methodology. Our dataset covers 4,098 MVTS data collections from active regions occurring between May 2010 and December 2018, includes 51 flare-predictive parameters, and integrates over 10,000 flare reports. Potential directions toward expansion of the time series, either “horizontally” – by adding more prediction-specific parameters, or “vertically” – by generalizing flare into integrated solar eruption prediction, are also explained. The immediate tasks enabled by the disseminated dataset include: optimization of solar flare prediction and detailed investigation for elusive flare predictors or precursors, with both operational (research-to-operations), and basic research (operations-to-research) benefits potentially following in the future.more » « less
- 
            Abstract The accurate prediction of solar flares is crucial due to their risks to astronauts, space equipment, and satellite communication systems. Our research enhances solar flare prediction by employing sophisticated data preprocessing and sampling techniques for the Space Weather Analytics for Solar Flares (SWAN-SF) data set, a rich source of multivariate time series data of solar active regions. Our study adopts a multifaceted approach encompassing four key methodologies. Initially, we address over 10 million missing values in the SWAN-SF data set through our innovative imputation technique called fast Pearson correlation-based k-nearest neighbors imputation. Subsequently, we propose a precise normalization technique, called LSBZM normalization, tailored for time series data, merging various strategies (log, square root, Box–Cox, Z-score, and min–max) to uniformly scale the data set's 24 attributes (photospheric magnetic field parameters), addressing issues such as skewness. We also explore the “near decision boundary sample removal” technique to enhance the classification performance of the data set by effectively resolving the challenge of class overlap. Finally, a pivotal aspect of our research is a thorough evaluation of diverse oversampling and undersampling methods, including SMOTE, ADASYN, Gaussian noise injection, TimeGAN, Tomek links, and random undersampling, to counter the severe imbalance in the SWAN-SF data set, notably a 60:1 ratio of major (X and M) to minor (C, B, and FQ) flaring events in binary classification. To demonstrate the effectiveness of our methods, we use eight classification algorithms, including advanced deep-learning-based architectures. Our analysis shows significant true skill statistic scores, underscoring the importance of data preprocessing and sampling in time-series-based solar flare prediction.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
