Abstract The study reports novel photonic properties of Ti3C2TxMXene flakes horizontally self‐assembled within cellulose nanofiber (CNF) matrix exhibiting unique bright multispectral colors combined with overall high transparency in the transmission regime. The intense reflection colors are reflected by individual flakes acting as effective micromirrors with shifts based on their subsurface positioning within the dielectric layers. Unique color appearances are controlled by an interplay of multiple bandgaps formed by constructive and destructive interferences at flake‐matrix interfaces. These colors manifest at the microscale under bright field optical microscopy, while the total physical film retains high transparency up to 85% and a typical greenish hue characteristic of the MXene content below 1% volume fraction. The diverse spectral appearance of 4 µm ultra‐thin films is ultimately controlled by the positioning of the horizontal flakes within the nanofiber matrix at diverse distances from the top surface. This work expands the understanding of thin films with assembled 2D materials within polymer matrix and their fundamental interactions creating new structural coloration functionalities with the potential for multispectral photonic applications such as camouflaging, photothermal treatment, and optical communication for flexible thin bio‐derived films.
more »
« less
Vivid Structural Coloration in Transparent MXene‐Cellulose Nanocrystals Composite Films
Abstract We demonstrate shear‐printed layered photonic films with vivid structural coloration from bio‐derived cellulose nanocrystals and highly aligned Ti3C2TxMXene nanoflakes. These ultrathin films (700–1500 nm) show high light transmittance above 40% in the visible range. In reflectance mode, however, the films appear vividly colored and iridescent due to the multiple distinct photonic bandgaps in the visible and near‐infrared ranges, which are rarely observed in CNC composites. The structural coloration is controlled by the stacking of MXene nanoscale‐thin layers separated by the thicker cellulose nanocrystals matrix, as confirmed by photonic simulations. The unique combination of distinctly different optical appearances in transmittance and reflectance modes occurs in films printed with just a few layers. This is because of the molecularly smooth interfaces and the high refractive contrast between bio‐based and inorganic phases, which result in a concurrence of constructive and destructive interference. These lamellar biophotonic films open the possibilities for advanced radiative cooling, camouflaging, multifunctional capacitors, and optical filtration applications, while the cellulose nanocrystals matrix strengthens their flexibility, robustness, and facilitates sustainability.
more »
« less
- Award ID(s):
- 2202907
- PAR ID:
- 10588727
- Publisher / Repository:
- Advanced Functional Materials
- Date Published:
- Journal Name:
- Advanced Functional Materials
- ISSN:
- 1616-301X
- Subject(s) / Keyword(s):
- structural colors iridescence transparent films MXene composites ultrathin photonic films
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Natural polymers, particularly plant‐derived nanocelluloses, self‐organize into hierarchical structures, enabling mechanical robustness, bright iridescence, emission, and polarized light reflection. These biophotonic properties are facilitated by the assembly of individual components during evaporation, such as cellulose nanocrystals (CNCs), which exhibit a left‐handed helical pitch in a chiral nematic state. This work demonstrates how optically active films with pre‐programmed opposite handedness (left or right) can be constructed via shear‐induced twisted printing with clockwise and counter‐clockwise shearing vectors. The resulting large‐area thin films are transparent yet exhibit pre‐determined mirror‐symmetrical optical activity, enabling the distinction of absorbed and emitted circularly polarized light. This processing method allows for sequential printing of thin and ultrathin films with twisted layered organization and on‐demand helicity. The complex light polarization behavior is due to step‐like changes in linear birefringence within each deposited layer and circular birefringence, different from that of conventional CNC films as revealed with Muller matrix analysis. Furthermore, intercalating an achiral organic dye into printed structures induces circularly polarized luminescence while preserving high transmittance and controlled handedness. These results suggest that twisted sequential printing can facilitate the construction of chiroptical metamaterials with tunable circular polarization, absorption, and emission for optical filters, encryption, photonic coatings, and chiral sensors.more » « less
-
Dielectric mirrors based on Bragg reflection and photonic crystals have broad application in controlling light reflection with low optical losses. One key parameter in the design of these optical multilayers is the refractive index contrast, which controls the reflector performance. This work reports the demonstration of a high-reflectivity multilayer photonic reflector that consists of alternating layers of TiO2films and nanolattices with low refractive index. The use of nanolattices enables high-index contrast between the high- and low-index layers, allowing high reflectivity with fewer layers. The broadband reflectance of the nanolattice reflectors with one to three layers has been characterized with peak reflectance of 91.9% at 527 nm and agrees well with theoretical optical models. The high-index contrast induced by the nanolattice layer enables a normalize reflectance band of Δλ/λoof 43.6%, the broadest demonstrated to date. The proposed nanolattice reflectors can find applications in nanophotonics, radiative cooling, and thermal insulation.more » « less
-
null (Ed.)Ag nanostructures exhibit extraordinary optical properties, which are important for photonic device integration. Herein, we deposited Ag–LiNbO 3 (LNO) nanocomposite thin films with Ag nanoparticles (NPs) embedded into the LNO matrix by the co-deposition of Ag and LNO using a pulsed laser deposition (PLD) method. The density and size of Ag NPs were tailored by varying the Ag composition. Low-density and high-density Ag–LNO nanocomposite thin films were deposited and their optical properties, such as transmittance spectra, ellipsometry measurement, as well as angle-dependent and polarization-resolved reflectivity spectra, were explored. The Ag–LNO films show surface plasmon resonance (SPR) in the visible range, tunable optical constants and optical anisotropy, which are critical for photonic device applications.more » « less
-
Birringer, Marc (Ed.)Abstract Over the past several years, atomically thin two‐dimensional carbides, nitrides, and carbonitrides, otherwise known asMXenes, have been expanded into over fifty material candidates that are experimentally produced, and over one hundred fifty more candidates that have been theoretically predicted. They have demonstrated transformative properties such as metallic‐type electrical conductivities, optical properties such as plasmonics and optical nonlinearity, and key surface properties such as hydrophilicity, and unique surface chemistry. In terms of their applications, they are poised to transform technological areas such as energy storage, electromagnetic shielding, electronics, photonics, optoelectronics, sensing, and bioelectronics. One of the most promising aspects ofMXene'sfuture application in all the above areas of interest, we believe, is reliably developing their flexible and bendable electronics and optoelectronics by printing methods (henceforth, termed asprinted flexible MXetronics). Designing and manipulatingMXeneconductive inks according to the application requirements will therefore be a transformative goal for future printed flexible MXetronics.MXene'scombined property of high electrical conductivity and water‐friendly nature to easily disperse its micro/nano‐flakes in an aqueous medium without any binder paves the way for designing additive‐free highly conductiveMXene ink. However, the chemical and/or structural and hence functional stability of water basedMXeneinks over time is not reliable, opening research avenues for further development of stable and conductiveMXeneinks. Such priorities will enable applications requiring high‐resolution and highly reliable printedMXeneelectronics using state‐of‐the art printing methods. EngineeringMXenestructural and surface functional properties while tuningMXeneink rheology in benign solvents of choice will be a key for ink developments. This review article summarizes the present status and prospects ofMXeneinks and their use in inkjet‐printed (IJP) technology for future flexible and bendableMXetronics.more » « less
An official website of the United States government

