Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography at X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.
more »
« less
Structure-factor amplitude reconstruction from serial femtosecond crystallography of two-dimensional membrane-protein crystals
Serial femtosecond crystallography of two-dimensional membrane-protein crystals at X-ray free-electron lasers has the potential to address the dynamics of functionally relevant large-scale motions, which can be sterically hindered in three-dimensional crystals and suppressed in cryocooled samples. In previous work, diffraction data limited to a two-dimensional reciprocal-space slice were evaluated and it was demonstrated that the low intensity of the diffraction signal can be overcome by collecting highly redundant data, thus enhancing the achievable resolution. Here, the application of a newly developed method to analyze diffraction data covering three reciprocal-space dimensions, extracting the reciprocal-space map of the structure-factor amplitudes, is presented. Despite the low resolution and completeness of the data set, it is shown by molecular replacement that the reconstructed amplitudes carry meaningful structural information. Therefore, it appears that these intrinsic limitations in resolution and completeness from two-dimensional crystal diffraction may be overcome by collecting highly redundant data along the three reciprocal-space axes, thus allowing the measurement of large-scale dynamics in pump–probe experiments.
more »
« less
- Award ID(s):
- 1231306
- PAR ID:
- 10588823
- Publisher / Repository:
- IUCrJ
- Date Published:
- Journal Name:
- IUCrJ
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2052-2525
- Page Range / eLocation ID:
- 34 to 45
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Solid‐state packing plays a defining role in the properties of a molecular organic material, but it is difficult to elucidate in the absence of single crystals that are suitable for X‐ray diffraction. Herein, we demonstrate the coupling of divergent synthesis with microcrystal electron diffraction (MicroED) for rapid assessment of solid‐state packing motifs, using a class of chiral nanocarbons—expanded helicenes—as a proof of concept. Two highly selective oxidative dearomatizations of a readily accessible helicene provided a divergent route to four electron‐deficient analogues containing quinone or quinoxaline units. Crystallization efforts consistently yielded microcrystals that were unsuitable for single‐crystal X‐ray diffraction, but ideal for MicroED. This technique facilitated the elucidation of solid‐state structures of all five compounds with <1.1 Å resolution. The otherwise‐inaccessible data revealed a range of notable packing behaviors, including four different space groups, homochirality in a crystal for a helicene with an extremely low enantiomerization barrier, and nanometer scale cavities.more » « less
-
One often observes small but measurable differences in the diffraction data measured from different crystals of a single protein. These differences might reflect structural differences in the protein and may reveal the natural dynamism of the molecule in solution. Partitioning these mixed-state data into single-state clusters is a critical step that could extract information about the dynamic behavior of proteins from hundreds or thousands of single-crystal data sets. Mixed-state data can be obtained deliberately (through intentional perturbation) or inadvertently (while attempting to measure highly redundant single-crystal data). To the extent that different states adopt different molecular structures, one expects to observe differences in the crystals; each of the polystates will create a polymorph of the crystals. After mixed-state diffraction data have been measured, deliberately or inadvertently, the challenge is to sort the data into clusters that may represent relevant biological polystates. Here, this problem is addressed using a simple multi-factor clustering approach that classifies each data set using independent observables, thereby assigning each data set to the correct location in conformational space. This procedure is illustrated using two independent observables, unit-cell parameters and intensities, to cluster mixed-state data from chymotrypsinogen (ChTg) crystals. It is observed that the data populate an arc of the reaction trajectory as ChTg is converted into chymotrypsin.more » « less
-
null (Ed.)Traditional X-ray diffraction data collected at cryo-temperatures have delivered invaluable insights into the three-dimensional structures of proteins, providing the backbone of structure–function studies. While cryo-cooling mitigates radiation damage, cryo-temperatures can alter protein conformational ensembles and solvent structure. Furthermore, conformational ensembles underlie protein function and energetics, and recent advances in room-temperature X-ray crystallography have delivered conformational heterogeneity information that can be directly related to biological function. Given this capability, the next challenge is to develop a robust and broadly applicable method to collect single-crystal X-ray diffraction data at and above room temperature. This challenge is addressed herein. The approach described provides complete diffraction data sets with total collection times as short as ∼5 s from single protein crystals, dramatically increasing the quantity of data that can be collected within allocated synchrotron beam time. Its applicability was demonstrated by collecting 1.09–1.54 Å resolution data over a temperature range of 293–363 K for proteinase K, thaumatin and lysozyme crystals at BL14-1 at the Stanford Synchrotron Radiation Lightsource. The analyses presented here indicate that the diffraction data are of high quality and do not suffer from excessive dehydration or radiation damage.more » « less
-
Currently, it is challenging to investigate aneurismal hemodynamics based on current in vivo data such as Magnetic Resonance Imaging or Computed Tomography due to the limitations in both spatial and temporal resolutions. In this work, we investigate the use of modal analysis at various resolutions to examine its usefulness for analyzing blood flows in brain aneurysms. Two variants of Dynamic Mode Decomposition (DMD): (i) Hankel-DMD; and (ii) Optimized-DMD, are used to extract the time-dependent dynamics of blood flows during one cardiac cycle. First, high-resolution hemodynamic data in patient-specific aneurysms are obtained using Computational Fluid Dynamics. Second, the dynamics modes, along with their spatial amplitudes and temporal magnitudes are calculated using the DMD analysis. Third, an examination of DMD analyses using a range of spatial and temporal resolutions of hemodynamic data to validate the applicability of DMD for low-resolution data, similar to ones in clinical practices. Our results show that DMD is able to characterize the inflow jet dynamics by separating large-scale structures and flow instabilities even at low spatial and temporal resolutions. Its robustness in quantifying the flow dynamics using the energy spectrum is demonstrated across different resolutions in all aneurysms in our study population. Our work indicates that DMD can be used for analyzing blood flow patterns of brain aneurysms and is a promising tool to be explored in in vivo.more » « less
An official website of the United States government

