skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elucidation of Diverse Solid‐State Packing in a Family of Electron‐Deficient Expanded Helicenes via Microcrystal Electron Diffraction (MicroED)**
Abstract Solid‐state packing plays a defining role in the properties of a molecular organic material, but it is difficult to elucidate in the absence of single crystals that are suitable for X‐ray diffraction. Herein, we demonstrate the coupling of divergent synthesis with microcrystal electron diffraction (MicroED) for rapid assessment of solid‐state packing motifs, using a class of chiral nanocarbons—expanded helicenes—as a proof of concept. Two highly selective oxidative dearomatizations of a readily accessible helicene provided a divergent route to four electron‐deficient analogues containing quinone or quinoxaline units. Crystallization efforts consistently yielded microcrystals that were unsuitable for single‐crystal X‐ray diffraction, but ideal for MicroED. This technique facilitated the elucidation of solid‐state structures of all five compounds with <1.1 Å resolution. The otherwise‐inaccessible data revealed a range of notable packing behaviors, including four different space groups, homochirality in a crystal for a helicene with an extremely low enantiomerization barrier, and nanometer scale cavities.  more » « less
Award ID(s):
1708210
PAR ID:
10256919
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
60
Issue:
5
ISSN:
1433-7851
Page Range / eLocation ID:
p. 2493-2499
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We use microcrystal electron diffraction (MicroED) to determine structures of three organic semiconductors, and show that these structures can be used along with grazing-incidence wide-angle X-ray scattering (GIWAXS) to understand crystal packing and orientation in thin films. Together these complimentary techniques provide unique structural insights into organic semiconductor thin films, a class of materials whose device properties and electronic behavior are sensitively dependent on solid-state order. 
    more » « less
  2. This study successfully implemented microcrystal electron diffraction (microED) and X-ray powder diffraction (XRPD) for the crystal structure determination of a new phase, TAF-CNU-1, Ni(C8H4O4)·3H2O, solved by microED from single microcrystals in the powder and refined at the kinematic and dynamic electron diffraction theory levels. This nickel metal–organic framework (MOF), together with its cobalt and manganese analogues with formula M(C8H4O4)·2H2O with M = MnII or CoII, were synthesized in aqueous media as one-pot preparations from the corresponding hydrated metal chlorides and sodium terephthalate, as a promising ‘green’ synthetic route to moisture stable MOFs. The crystal structures of the two latter materials have been previously determined ab initio from X-ray powder diffraction. The advantages and disadvantages of both structural characterization techniques are briefly summarized. Additional solid-state property characterization was carried out using thermogravimetric analysis, scanning electron microscopy and Fourier transform infrared spectroscopy. 
    more » « less
  3. Abstract Chemical reduction of OBO‐fused double[5]helicene with Group 1 metals (Na and K) has been investigated for the first time. Two doubly‐reduced products have been isolated and structurally characterized by single‐crystal X‐ray diffraction, revealing a solvent‐separated ion triplet (SSIT) with Na+ions and a contact‐ion pair (CIP) with K+ion. As the key structural outcome, the X‐ray crystallographic analysis discloses the consequences of adding two electrons to the double helicene core in the SSIT without metal binding and reveals the preferential binding site in the CIP with K+counterions. In both products, an increase in the twisting of the double helicene core upon charging was observed. The negative charge localization at the central core has been identified by theoretical calculations, which are in full agreement with X‐ray crystallographic and NMR spectroscopic results. Notably, it was confirmed that the two‐electron reduction of OBO‐fused double[5]helicene is reversible. 
    more » « less
  4. A solid-state photochemical reaction of crystalline thymine hydrate (TH) resulted in a clean topochemical transformation into the cis-syn-dimer (TD), matching the structure as the one responsible for most UV lesions in DNA. Microcrystals of TD grown by drop casting piperidine solutions in a TEM grid made it possible to determine their structure by microelectron diffraction (3D ED) and to confirm expectations that an in situ electron-beam ionization reaction could result in a topotactic dimer splitting that, in this case, retains single-crystal-to-single-crystal character up to ca. 30% conversion. The packing structure of dimer TD and the as formed monomer T displays a novel trimeric hydrogen bonding motif, and the latter represents a new crystal phase. Beyond interesting analogies between single crystals of T and TD, and DNA, such as templated dimer formation and electron-transfer-induced repair, this work is a rare example of an electron beam-induced chemical reaction in the crystalline solid state. 
    more » « less
  5. Abstract Chemical reduction of a benzo‐fused double [7]helicene (1) with two alkali metals, K and Rb, provided access to three different reduced states of1. The doubly‐reduced helicene12−has been characterized by single‐crystal X‐ray diffraction as a solvent‐separated ion triplet with two potassium counterions. The triply‐ and tetra‐reduced helicenes,13−and14−, have been crystallized together in an equimolar ratio and both form the contact‐ion complexes with two Rb+ions each, leaving three remaining Rb+ions wrapped by crown ether and THF molecules. As structural consequence of the stepwise reduction of1, the central axis of helicene becomes more compressed upon electron addition (1.42 Å in14−vs. 2.09 Å in1). This is accompanied by an extra core twist, as the peripheral dihedral angle increases from 16.5° in1to 20.7° in14−. Theoretical calculations provided the pattern of negative charge build‐up and distribution over the contorted helicene framework upon each electron addition, and the results are consistent with the X‐ray crystallographic and NMR spectroscopic data. 
    more » « less