skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2241005

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Dinitrogen (N2) fixation supports marine life through the supply of reactive nitrogen. Recent studies suggest that particle-associated non-cyanobacterial diazotrophs (NCDs) could contribute significantly to N2fixation contrary to the paradigm of diazotrophy as primarily driven by cyanobacterial genera. We examine the community composition of NCDs associated with suspended, slow, and fast-sinking particles in the North Pacific Subtropical Gyre. Suspended and slow-sinking particles showed a higher abundance of cyanobacterial diazotrophs than fast-sinking particles, while fast-sinking particles showed a higher diversity of NCDs includingMarinobacter,OceanobacterandPseudomonas. Using single-cell mass spectrometry we find that Gammaproteobacteria N2fixation rates were higher on suspended and slow-sinking particles (up to 67 ± 48.54 fmol N cell⁻¹ d⁻¹), while putative NCDs’ rates were highest on fast-sinking particles (121 ± 22.02 fmol N cell⁻¹ d⁻¹). These rates are comparable to previous diazotrophic cyanobacteria observations, suggesting that particle-associated NCDs may be important contributors to pelagic N2fixation. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Abstract Kı̄lauea volcano is one of the most active volcanoes in the world with nearly continuous seismic activity from 1983 to 2018. In May 2018, the Kı̄lauea volcano erupted and released volcanic ash into the atmosphere. Carried by easterly winds, the volcanic ash plume dispersed westward and by June 2018, the plume was observed over the central part (150E to 160W) of the nutrient‐poor North Pacific Subtropical Gyre (NPSG). Coincident with precipitation during the same period, anomalously high dust deposition comprised mostly of wet dust was observed over the same region. Consequently, patches of high chlorophyll (chl ) waters were observed approximately 5 north of the high dust deposition area from the middle of June to early August 2018 via satellite images. The phytoplankton bloom peaked in July encompassing 1.5 million , about 5 or 50 times the size of Malaysia or Taiwan, respectively. In addition to the large dust deposition, shoaling of the mixed layer in the range of 25–50 m is believed to have concentrated the bloom within the optical depth detected by satellite. Net primary production and export production estimated from satellite observations show that the July 2018 bloom generated an additional 1.91 Tg C of net carbon production, and 0.34 Tg C was exported from the euphotic zone. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Abstract Islands in the tropical Pacific supply elevated nutrients to nearshore waters that enhance phytoplankton biomass and create hotspots of productivity in otherwise nutrient‐poor oceans. Despite the importance of these hotspots in supporting nearshore food webs, the spatial and temporal variability of phytoplankton enhancement and changes in the underlying phytoplankton communities across nearshore to open ocean systems remain poorly understood. In this study, a combination of flow cytometry, pigment analyses, 16S rRNA gene amplicons, and metagenomic sequencing provides a synoptic view of phytoplankton dynamics over a 4‐yr, near‐monthly time series across coastal Kāneʻohe Bay, Hawaiʻi, spanning from an estuarine Indigenous aquaculture system to the adjacent offshore environment. Through comparisons with measurements taken at Station ALOHA located in the oligotrophic North Pacific Subtropical Gyre, we observed a sharp and persistent transition between picocyanobacterial communities, fromSynechococcusclade II abundant in the nearshore toProchlorococcushigh‐light adapted clade II (HLII) proliferating in offshore and open ocean waters. In comparison to immediately adjacent offshore waters and the surrounding open ocean, phytoplankton biomass within Kāneʻohe Bay was dramatically elevated. Members of the phytoplankton community revealed strong seasonal patterns, while nearshore phytoplankton biomass positively correlated with wind speed, rainfall, and wind direction, and not water temperatures. These findings elucidate the spatiotemporal dynamics underlying transitions in ocean biogeochemistry and phytoplankton dynamics across estuarine to open ocean waters in the tropical Pacific and provide a foundation for quantifying deviations from baseline conditions due to ongoing climate change. 
    more » « less
  4. Abstract The North Pacific subtropical gyre is a globally important contributor to carbon uptake despite being a persistently oligotrophic ecosystem. Supply of the micronutrient iron to the upper ocean varies seasonally to episodically, and when coupled with rapid biological consumption, results in low iron concentrations. In this study, we examined changes in iron uptake rates, along with siderophore concentrations and biosynthesis potential at Station ALOHA across time (2013–2016) and depth (surface to 500 m) to observe changes in iron acquisition and internal cycling by the microbial community. The genetic potential for siderophore biosynthesis was widespread throughout the upper water column, and biosynthetic gene clusters peaked in spring and summer along with siderophore concentrations, suggesting changes in nutrient delivery, primary production, and carbon export seasonally impact iron acquisition. Dissolved iron turnover times, calculated from iron‐amended experiments in surface (15 m) and mesopelagic (300 m) waters, ranged from 9 to 252 d. The shortest average turnover times at both depths were associated with inorganic iron additions (14  9 d) and the longest with iron bound to strong siderophores (148  225 d). Uptake rates of siderophore‐bound iron were faster in mesopelagic waters than in the surface, leading to high Fe : C uptake ratios of heterotrophic bacteria in the upper mesopelagic. The rapid cycling and high demand for iron at 300 m suggest differences in microbial metabolism and iron acquisition in the mesopelagic compared to surface waters. Together, changes in siderophore production and consumption over the seasonal cycle suggest organic carbon availability impacts iron cycling at Station ALOHA. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. Abstract Islands in oligotrophic oceans act as local sources of nutrients. These nutrients originate from land and from deep oceanic nutrients introduced to the photic zone by tides, currents, and internal waves interacting with island bathymetry. These processes create the island mass effect (IME), in which increased chlorophylla(Chla) is found near islands compared to oceanic waters. The IME has been described via satellite observations, but the effects on phytoplankton community structure are not well documented. From 2013 to 2020, chlorophyll, nutrient, and picoplankton samples were collected from multiple depths on quarterly cruises at two sites south of O'ahu, Hawai'i.Prochlorococcus,Synechococcus, picoeukaryotes, and heterotrophic bacteria were enumerated using flow cytometry. We compared nearshore results to Sta. ALOHA, 100 km from O'ahu. Consistent with the expected IME, Chlaconcentrations were significantly enhanced at both nearshore sites compared to Sta. ALOHA.Prochlorococcusconcentrations increased with greater distance from shore, particularly below 50 m; mixed layer concentrations ofSynechococcusand picoeukaryotes significantly decreased with greater distance from shore, as did concentrations of nitrate and phosphate below the mixed layer. Heterotrophic bacteria concentrations did not show a spatial trend. Carbon‐based biomass estimates of the picoplankton population indicated that the IME‐associated Chlaincreases near the island are likely driven by larger phytoplankton classes. This study describes the IME‐associated shift in the picophytoplankton community distribution, which has implications for nutrient cycling, food web dynamics and fisheries in oligotrophic island ecosystems, and adds to the understanding of spatial heterogeneity in carbon fixation in the ocean. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  6. Abstract We examined the nitrogen (N) biogeochemistry of adjacent cyclonic and anticyclonic eddies near Hawai'i in the North Pacific Subtropical Gyre (NPSG) and explored mechanisms that sustain productivity in the cyclone after the initial intensification stage. The top of the nutricline was uplifted into the euphotic zone in the cyclone and depressed in the anticyclone. Subsurface nutrient concentrations and apparent oxygen utilization at the cyclone's inner periphery were higher than expected from isopycnal displacement, suggesting that shallow remineralization of organic material generated excess nutrients in the subsurface. The excess nutrients may provide a supply of subsurface nutrients to sustain productivity in maturing eddies. The shallow remineralization also raises questions regarding the extent to which cyclonic eddies promote deep carbon sequestration in subtropical gyres such as the NPSG. An upward increase in nitrate15N/14N isotope ratios below the euphotic zone, indicative of partial nitrate assimilation, coincided with negative preformed nutrients—potentially signaling heterotrophic bacterial consumption of carbon‐rich (nitrogen‐poor) organic material. The15N/14N of material collected in shallow sediment traps was significantly higher in the cyclone than in the anticyclone and showed correspondence to the15N/14N ratio of the nitrate supply, which is acutely sensitive to sea level anomaly in the region. A number of approaches were applied to estimate the contribution of N2fixation to export production. Results among approaches were inconsistent, which we attribute to non‐steady state conditions during our observation period. 
    more » « less
  7. Abstract Uncertainties in the temporal and spatial patterns of marine primary production and respiration limit our understanding of the ocean carbon (C) cycle and our ability to predict its response to environmental changes. Here we present a comprehensive time‐series analysis of plankton metabolism at the Hawaii Ocean Time‐series program site, Station ALOHA, in the North Pacific Subtropical Gyre. Vertical profiles of gross oxygen production (GOP) and community respiration (CR) were quantified using the18O‐labeled water method together with net changes in O2to Ar ratios during dawn to dusk in situ incubations. Rates of14C‐bicarbonate assimilation (14C‐based primary production [14C‐PP]) were also determined concurrently. During the observational period (April 2015 to July 2020), euphotic zone depth‐integrated (0–125 m) GOP and14C‐PP ranged from 35 to 134 mmol O2m−2d−1and 18 to 75 mmol C m−2d−1, respectively, while CR ranged from 37 to 187 mmol O2m−2d−1. All biological rates varied with depth and season, with seasonality most pronounced in the lower portion of the euphotic zone (75–125 m). The mean annual ratio of GOP to14C‐PP was 1.7 ± 0.1 mol O2(mol C)−1. While previous studies have reported convergence of GOP and14C‐PP with depth, we find a less pronounced vertical decline in the GOP to14C‐PP ratios, with GOP exceeding14C‐PP by 50% or more in the lower euphotic zone. Variability in CR was higher than for GOP, driving most of the variability in the balance between the two. 
    more » « less
  8. Abstract The current conventional paradigm of ocean food web structure inserts one full level or more of microzooplankton heterotrophic consumption, a substantial energy drop, between phytoplankton and mesozooplankton. Using a dataset with contemporaneous measurements of primary production (PP), size-fractioned mesozooplankton biomass, and micro- and mesozooplankton grazing rates from 10 tropical to temperate ocean ecosystems, we examined whether the structural inefficiencies in this paradigm allow sufficient energy transfer to support active metabolism and growth of observed zooplankton standing stocks. Zooplankton carbon requirements (ZCR) were determined from allometric equations that account for ecosystem differences in temperature and size structure. ZCRs were relatively low (∼30% of PP or less) for both oligotrophic systems and bloom biomass accumulation in eutrophic coastal waters. Higher relative ZCRs (>30% PP) were associated with elevated mesozooplankton grazing scenarios (bloom declines, abundant salps), advective subsidies, and open-ocean upwelling systems. Microzooplankton generally dominated as grazers of PP but were equal or secondary to direct herbivory as nutritional support for mesozooplankton in five of eight regional studies. All systems were able to satisfy ZCR within the conventional food-web interpretation, but balanced open-ocean upwelling systems required the most efficient alignments of contributions from microzooplankton grazing, direct herbivory, and carnivory to do so. 
    more » « less
  9. Abstract A targeted method for the quantification of bioavailable amide N found in marine DON (bDON) is presented. The method utilizes mild acid hydrolysis to convert amide N found in proteins andN‐acetyl amino polysaccharides to primary amine containing products that are measured using a highly sensitive (nanomolar range and precision) fluorometric technique with addition ofO‐phthaldialdehyde. We find amidic bDON concentrations ranging from 0.08 to 1.82 μM N within waters from the upper 300 m in the southern California Current, Southern California Bight, and subtropical North Pacific representing 15–33% of bulk DON concentrations. Bioassay experiments from the North Pacific revealed consumption of ~20% of the in situ bDON within 5 days. The method represents a simple and rapid tool for the quantification of bioavailable DON concentrations in seawater with improved analytical precision over traditional estimates of bulk DON concentrations. 
    more » « less
  10. Biddle, Jennifer F (Ed.)
    ABSTRACT Aerobic anoxygenic phototrophic (AAP) bacteria harvest light energy using bacteriochlorophyll-containing reaction centers to supplement their mostly heterotrophic metabolism. While their abundance and growth have been intensively studied in coastal environments, much less is known about their activity in oligotrophic open ocean regions. Therefore, we combinedin situsampling in the North Pacific Subtropical Gyre, north of O'ahu island, Hawaii, with two manipulation experiments. Infra-red epifluorescence microscopy documented that AAP bacteria represented approximately 2% of total bacteria in the euphotic zone with the maximum abundance in the upper 50 m. They conducted active photosynthetic electron transport with maximum rates up to 50 electrons per reaction center per second. Thein situdecline of bacteriochlorophyll concentration over the daylight period, an estimate of loss rates due to predation, indicated that the AAP bacteria in the upper 50 m of the water column turned over at rates of 0.75–0.90 d−1. This corresponded well with the specific growth rate determined in dilution experiments where AAP bacteria grew at a rate 1.05 ± 0.09 d−1. An amendment of inorganic nitrogen to obtain N:P = 32 resulted in a more than 10 times increase in AAP abundance over 6 days. The presented data document that AAP bacteria are an active part of the bacterioplankton community in the oligotrophic North Pacific Subtropical Gyre and that their growth was mostly controlled by nitrogen availability and grazing pressure.IMPORTANCEMarine bacteria represent a complex assembly of species with different physiology, metabolism, and substrate preferences. We focus on a specific functional group of marine bacteria called aerobic anoxygenic phototrophs. These photoheterotrophic organisms require organic carbon substrates for growth, but they can also supplement their metabolic needs with light energy captured by bacteriochlorophyll. These bacteria have been intensively studied in coastal regions, but rather less is known about their distribution, growth, and mortality in the oligotrophic open ocean. Therefore, we conducted a suite of measurements in the North Pacific Subtropical Gyre to determine the distribution of these organisms in the water column and their growth and mortality rates. A nutrient amendment experiment showed that aerobic anoxygenic phototrophs were limited by inorganic nitrogen. Despite this, they grew more rapidly than average heterotrophic bacteria, but their growth was balanced by intense grazing pressure. 
    more » « less