skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrating amyloid imaging and genetics for early risk stratification of Alzheimer's disease
Abstract INTRODUCTIONAlzheimer's disease (AD) initiates years prior to symptoms, underscoring the importance of early detection. While amyloid accumulation starts early, individuals with substantial amyloid burden may remain cognitively normal, implying that amyloid alone is not sufficient for early risk assessment. METHODSGiven the genetic susceptibility of AD, a multi‐factorial pseudotime approach was proposed to integrate amyloid imaging and genotype data for estimating a risk score. Validation involved association with cognitive decline and survival analysis across risk‐stratified groups, focusing on patients with mild cognitive impairment (MCI). RESULTSOur risk score outperformed amyloid composite standardized uptake value ratio in correlation with cognitive scores. MCI subjects with lower pseudotime risk score showed substantial delayed onset of AD and slower cognitive decline. Moreover, pseudotime risk score demonstrated strong capability in risk stratification within traditionally defined subgroups such as early MCI, apolipoprotein E (APOE) ε4+ MCI,APOEε4– MCI, and amyloid+ MCI. DISCUSSIONOur risk score holds great potential to improve the precision of early risk assessment. HighlightsAccurate early risk assessment is critical for the success of clinical trials.A new risk score was built from integrating amyloid imaging and genetic data.Our risk score demonstrated improved capability in early risk stratification.  more » « less
Award ID(s):
1942394
PAR ID:
10588916
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Corporate Creator(s):
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Alzheimer's & Dementia
Volume:
20
Issue:
11
ISSN:
1552-5260
Page Range / eLocation ID:
7819 to 7830
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BACKGROUNDLimited research has explored the effect of cardiovascular risk and amyloid interplay on cognitive decline in East Asians. METHODSVascular burden was quantified using Framingham's General Cardiovascular Risk Score (FRS) in 526 Korean Brain Aging Study (KBASE) participants. Cognitive differences in groups stratified by FRS and amyloid positivity were assessed at baseline and longitudinally. RESULTSBaseline analyses revealed that amyloid‐negative (Aβ–) cognitively normal (CN) individuals with high FRS had lower cognition compared to Aβ– CN individuals with low FRS (p < 0.0001). Longitudinally, amyloid pathology predominantly drove cognitive decline, while FRS alone had negligible effects on cognition in CN and mild cognitive impairment (MCI) groups. CONCLUSIONOur findings indicate that managing vascular risk may be crucial in preserving cognition in Aβ– individuals early on and before the clinical manifestation of dementia. Within the CN and MCI groups, irrespective of FRS status, amyloid‐positive individuals had worse cognitive performance than Aβ– individuals. HighlightsVascular risk significantly affects cognition in amyloid‐negative older Koreans.Amyloid‐negative CN older adults with high vascular risk had lower baseline cognition.Amyloid pathology drives cognitive decline in CN and MCI, regardless of vascular risk.The study underscores the impact of vascular health on the AD disease spectrum. 
    more » « less
  2. Abstract INTRODUCTIONIdentification of individuals with mild cognitive impairment (MCI) who are at risk of developing Alzheimer's disease (AD) is crucial for early intervention and selection of clinical trials. METHODSWe applied natural language processing techniques along with machine learning methods to develop a method for automated prediction of progression to AD within 6 years using speech. The study design was evaluated on the neuropsychological test interviews ofn = 166 participants from the Framingham Heart Study, comprising 90 progressive MCI and 76 stable MCI cases. RESULTSOur best models, which used features generated from speech data, as well as age, sex, and education level, achieved an accuracy of 78.5% and a sensitivity of 81.1% to predict MCI‐to‐AD progression within 6 years. DISCUSSIONThe proposed method offers a fully automated procedure, providing an opportunity to develop an inexpensive, broadly accessible, and easy‐to‐administer screening tool for MCI‐to‐AD progression prediction, facilitating development of remote assessment. HighlightsVoice recordings from neuropsychological exams coupled with basic demographics can lead to strong predictive models of progression to dementia from mild cognitive impairment.The study leveraged AI methods for speech recognition and processed the resulting text using language models.The developed AI‐powered pipeline can lead to fully automated assessment that could enable remote and cost‐effective screening and prognosis for Alzehimer's disease. 
    more » « less
  3. BackgroundSemantic intrusion errors (SIEs) are associated with mild cognitive impairment (MCI) due to Alzheimer's disease (AD). It is unknown whether accounting for maximum learning capacity still leads to an increase in SIEs when elevated plasma p-tau217, a biological indicator of underlying AD, is present. MethodsOne hundred fifty-eight older adult participants completed the Loewenstein-Acevedo Scales for Semantic Interference and Learning (LASSI-L), a sensitive cognitive challenge test designed to elicit SIEs. Of these, 108 were clinically diagnosed with amnestic MCI (aMCI). Fifty-eight individuals met or exceeded a plasma p-tau217positivity of >0.55 pg/ml, while 50 individuals scored below this threshold. ResultsAfter adjusting for demographic covariates and maximum learning capacity, the aMCI p-tau217+ group evidenced more SIEs compared to aMCI p-tau217- on the first (list B1;p= 0.035) and second trials of the competing list (list B2;p= 0.006). Biological predictors such asApoEε4 status, higher p-tau217, and older age were predictors of an elevated number of SIEs [list B2:F(3,104) = 10.92;p= 0.001;R= 0.489)]. ConclusionsUnlike previous studies that used amyloid PET or other plasma biomarkers, individuals with aMCI p-tau217+ evidenced more SIEs, even after adjusting for their initial learning capacity, a covariate that has not been studied previously. These findings support that SIEs are more prevalent in the presence of underlying AD pathology and occur independent of learning deficits. 
    more » « less
  4. Alzheimer’s disease (AD) presents significant challenges in clinical practice due to its heterogeneous manifestation and variable progression rates. This work develops a comprehensive anatomical staging framework to predict progression from mild cognitive impairment (MCI) to AD. Using the ADNI database, the scalable Subtype and Stage Inference (s-SuStaIn) model was applied to 118 neuroanatomical features from cognitively normal (n = 504) and AD (n = 346) participants. The framework was validated on 808 MCI participants through associations with clinical progression, CSF and FDG-PET biomarkers, and neuropsychiatric measures, while adjusting for common confounders (age, gender, education, and APOE ε4 alleles). The framework demonstrated superior prognostic accuracy compared to traditional risk assessment (C-index = 0.73 vs. 0.62). Four distinct disease subtypes showed differential progression rates, biomarker profiles (FDG-PET and CSF Aβ42), and cognitive trajectories: Subtype 1, subcortical-first pattern; Subtype 2, executive–cortical pattern; Subtype 3, disconnection pattern; and Subtype 4, frontal–executive pattern. Stage-dependent changes revealed systematic deterioration across diverse cognitive domains, particularly in learning acquisition, visuospatial processing, and functional abilities. This data-driven approach captures clinically meaningful disease heterogeneity and improves prognostication in MCI, potentially enabling more personalized therapeutic strategies and clinical trial design. 
    more » « less
  5. Angiotensin-converting enzyme-1 (ACE1) and apolipoproteins (APOs) may play important roles in the development of Alzheimer’s disease (AD) and cardiovascular diseases (CVDs). This study aimed to examine the associations of AD, CVD, and endocrine-metabolic diseases (EMDs) with the levels of ACE1 and 9 APO proteins (ApoAI, ApoAII, ApoAIV, ApoB, ApoCI, ApoCIII, ApoD, ApoE, and ApoH). Non-Hispanic white individuals including 109 patients with AD, 356 mild cognitive impairment (MCI), 373 CVD, 198 EMD and controls were selected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Multivariable general linear model (GLM) was used to examine the associations. ApoE ε4 allele was associated with AD, as well as ApoAIV, ApoB and ApoE proteins, but not associated with CVD and EMD. Both AD and CVD were associated with levels of ACE1, ApoB, and ApoH proteins. AD, MCI and EMD were associated with levels of ACE1, ApoAII, and ApoE proteins. This is the first study to report associations of ACE1 and several APO proteins with AD, MCI, CVD and EMD, respectively, including upregulated and downregulated protein levels. In conclusion, as specific or shared biomarkers, the levels of ACE1 and APO proteins are implicated for AD, CVD, EMD and ApoE ε4 allele. Further studies are required for validation to establish reliable biomarkers for these health conditions. 
    more » « less