Abstract Tropical cyclones (TCs) are drivers of extreme rainfall and surge, but the current and future TC rainfall–surge joint hazard has not been well quantified. Using a physics-based approach to simulate TC rainfall and storm tides, we show drastic increases in the joint hazard from historical to projected future (SSP5–8.5) conditions. The frequency of joint extreme events (exceeding both hazards’ historical 100-year levels) may increase by 7–36-fold in the southern US and 30–195-fold in the Northeast by 2100. This increase in joint hazard is induced by sea-level rise and TC climatology change; the relative contribution of TC climatology change is higher than that of sea-level rise for 96% of the coast, largely due to rainfall increases. Increasing storm intensity and decreasing translation speed are the main TC change factors that cause higher rainfall and storm tides and up to 25% increase in their dependence.
more »
« less
Sensitivity of tropical cyclone risk across the US to changes in storm climatology and socioeconomic growth
Abstract Tropical cyclone (TC) hazards coupled with dense urban development along the coastline have resulted in trillions in US damages over the past several decades, with an increasing trend in losses in recent years. So far, this trend has been driven by increasing coastal development. However, as the climate continues to warm, changing TC climatology may also cause large changes in coastal damages in the future. Approaches to quantifying regional TC risk typically focus on total storm damage. However, it is crucial to understand the spatial footprint of TC damage and ultimately the spatial distribution of TC risk. Here, we quantify the magnitude and spatial pattern of TC risk (in expected annual damage) across the US from wind, storm surge, and rainfall using synthetic TCs, physics-based hazard models, and a county-level statistical damage model trained on historical TC data. We then combine end-of-century TC hazard simulations with US population growth and wealth increase scenarios (under the SSP2 4.5 emission scenario) to investigate the sensitivity of changes in TC risk across the US Atlantic and Gulf coasts. We find that not directly accounting for the effects of rainfall and storm surge results in much lower risk estimates and smaller future increases in risk. TC climatology change and socioeconomic change drive similar magnitude increases in total expected annual damage across the US (roughly 160%), and that their combined effect (633% increase) is much higher.
more »
« less
- PAR ID:
- 10588945
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- ISSN:
- 1748-9326
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tropical cyclones (TCs) are one of the greatest threats to coastal communities along the US Atlantic and Gulf coasts due to their extreme wind, rainfall and storm surge. Analyzing historical TC climatology and modeling TC hazards can provide valuable insight to planners and decision makers. However, detailed TC size information is typically only available from 1988 onward, preventing accurate wind, rainfall, and storm surge modeling for TCs occurring earlier in the historical record. To overcome temporally limited TC size data, we develop a database of size estimates that are based on reanalysis data and a physics‐based model. Specifically, we utilize ERA5 reanalysis data to estimate the TC outer size, and a physics‐based TC wind model to estimate the radius of maximum wind. We evaluate our TC size estimates using two high‐resolution wind data sets as well as Best Track information for a wide variety of TCs. Using the estimated size information plus the TC track and intensity, we reconstruct historical storm tides from 1950 to 2020 using a basin‐scale hydrodynamic model and show that our reconstructions agree well with observed peak storm tide and storm surge. Finally, we demonstrate that incorporating an expanded set of historical modeled storm tides beginning in 1950 can enhance our understanding of US coastal hazard. Our newly developed database of TC sizes and associated storm tides/surges can aid in understanding North Atlantic TC climatology and modeling TC wind, storm surge, and rainfall hazard along the US Atlantic and Gulf coasts.more » « less
-
Abstract Compound flooding, characterized by the co‐occurrence of multiple flood mechanisms, is a major threat to coastlines across the globe. Tropical cyclones (TCs) are responsible for many compound floods due to their storm surge and intense rainfall. Previous efforts to quantify compound flood hazard have typically adopted statistical approaches that may be unable to fully capture spatio‐temporal dynamics between rainfall‐runoff and storm surge, which ultimately impact total water levels. In contrast, we pose a physics‐driven approach that utilizes a large set of realistic TC events and a simplified physics‐based rainfall model and simulates each event within a hydrodynamic model framework. We apply our approach to investigate TC flooding in the Cape Fear River, NC. We find TC approach angle, forward speed, and intensity are relevant for compound flood potential, but rainfall rate and time lag between the centroid of rainfall and peak storm tide are the strongest predictors of compounding magnitude. Neglecting rainfall underestimates 100‐year flood depths across 28% of the floodplain, and taking the maximum of each hazard modeled separately still underestimates 16% of the floodplain. We find the main stem of the river is surge‐dominated, upstream portions of small streams and pluvial areas are rainfall dominated, but midstream portions of streams are compounding zones, and areas close to the coastline are surge dominated for lower return periods but compounding zones for high return periods (100 years). Our method links joint rainfall‐surge occurrence to actual flood impacts and demonstrates how compound flooding is distributed across coastal catchments.more » « less
-
Coastal flooding from tropical cyclone (TC)‐induced storm surges is among the most devastating natural hazards in the US. Accurately quantifying storm surge hazards is crucial for risk mitigation and climate adaptation. In this study, we conduct climatology‐hydrodynamic modeling to estimate TC surge hazards along the US northeast coastline under future climate scenarios. In this methodology, we generate synthetic TCs for the northeastern US to drive a hydrodynamic model (ADCIRC) to simulate storm surges. Observing their significant effect on storm surge, for the first time, we bias‐correct landfall angles of synthetic TCs, in addition to bias‐correcting their frequency and intensity. Our findings show that under the combined effects of sea level rise (SLR) and TC climatology change, historical 100‐year extreme water levels (EWLs) along the US northeast coastline would occur annually at the end of the century in both SSP2‐4.5 and SSP5‐8.5 emissions scenarios. 500‐year EWLs are also projected to occur every 1–60 (1–20) years under SSP2‐4.5 (SSP5‐8.5). SLR is the dominant factor in the dramatic changes in the EWLs. However, while in higher latitudes () TC climatology change modestly affect EWLs ( contribution for 100‐year and for 500‐year EWL changes), in lower latitudes the impact is more significant (up to 40% contribution to 100‐year and 55% for 500‐year EWL changes). Extending previous methods, the physics‐based probabilistic framework presented here can be applied to project future coastal flood hazards under the effects of SLR and storm climatology change for any TC‐prone region.more » « less
-
Abstract Coastal areas are subject to the joint risk associated with rainfall‐driven flooding and storm surge hazards. To capture this dependency and the compound nature of these hazards, bivariate modelling represents a straightforward and easy‐to‐implement approach that relies on observational records. Most existing applications focus on a single tide gauge–rain gauge/streamgauge combination, limiting the applicability of bivariate modelling to develop high‐resolution space–time design events that can be used to quantify the dynamic, that is, varying in space and time, compound flood hazard in coastal basins. Moreover, there is a need to recognize that not all extreme events always come from a single population, but can reflect a mixture of different generating mechanisms. Therefore, this paper describes an empirical approach to develop design storms with high‐resolution in space and time (i.e., ~5 km and hourly) for different joint annual exceedance probabilities. We also stratify extreme rainfall and storm surge events depending on whether they were caused by tropical cyclones (TCs) or not. We find that there are significant differences between the TC and non‐TC populations, with very different dependence structures that are missed if we treat all the events as coming from a single population. While we apply this methodology to one basin near Houston, Texas, our approach is general enough to make it applicable for any coastal basin exposed to compounding flood hazards from storm surge and rainfall‐induced flooding.more » « less
An official website of the United States government
