Energy insecurity poses a global challenge with far-reaching social equity and health implications. This paper provides a comprehensive perspective on the relationship between energy insecurity and health outcomes in developed countries. Existing research has identified associations between energy insecurity and various physical and mental health outcomes. Moreover, climate change can exacerbate the adverse health consequences of energy insecurity, disproportionately affecting vulnerable populations. Based on a review of existing literature, this paper identifies several knowledge gaps, proposes future research directions, and discusses data challenges faced by researchers in measuring energy insecurity and assessing the health impacts of existing programs that tackle energy insecurity. Furthermore, the paper highlights the importance of fostering collaboration among different governmental agencies and other sectors to enhance energy insecurity program management and data collection for program evaluation.
more »
« less
This content will become publicly available on May 8, 2026
Internal vibrational energy redistribution precedes energy dissipation into the solvent upon photoexcitation of heme proteins
Optically excited heme proteins release their energy into the hydration water in approximately 7 ps, subsequent to internal vibrational redistribution. Adapted from an image created by S.Duce.
more »
« less
- Award ID(s):
- 2245240
- PAR ID:
- 10589043
- Publisher / Repository:
- RSC
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 27
- Issue:
- 18
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 9470 to 9477
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Regeneration of lost appendages is a gradual process in many species, spreading energetic costs of regeneration through time. Energy allocated to the regeneration of lost appendages cannot be used for other purposes and, therefore, commonly elicits energetic trade‐offs in biological processes. We used limb loss in the Asian shore crabHemigrapsus sanguineusto compare the strength of energetic trade‐offs resulting from historic limb losses that have been partially regenerated versus current injuries that have not yet been repaired. Consistent with previous studies, we show that limb loss and regeneration results in trade‐offs that reduce reproduction, energy storage, and growth. As may be expected, we show that trade‐offs in these metrics from historic limb losses far outweigh trade‐offs from current limb losses, and correlate directly with the degree of historic limb loss that has been regenerated. As regenerating limbs get closer to their normal size, these historical injuries get harder to detect, despite the continued allocation of additional resources to limb development. Our results demonstrate the importance of and a method for identifying historic appendage losses and of quantifying the amount of regeneration that has already occurred, as opposed to assessing only current injury, to accurately assess the strength of energetic trade‐offs in animals recovering from nonlethal injury.more » « less
-
Abstract In the quest to determine fault weakening processes that govern earthquake mechanics, it is common to infer the earthquake breakdown energy from seismological measurements. Breakdown energy is observed to scale with slip, which is often attributed to enhanced fault weakening with continued slip or at high slip rates, possibly caused by flash heating and thermal pressurization. However, seismologically inferred breakdown energy varies by more than six orders of magnitude and is frequently found to be negative-valued. This casts doubts about the common interpretation that breakdown energy is a proxy for the fracture energy, a material property which must be positive-valued and is generally observed to be relatively scale independent. Here, we present a dynamic model that demonstrates that breakdown energy scaling can occur despite constant fracture energy and does not require thermal pressurization or other enhanced weakening. Instead, earthquake breakdown energy scaling occurs simply due to scale-invariant stress drop overshoot, which may be affected more directly by the overall rupture mode – crack-like or pulse-like – rather than from a specific slip-weakening relationship.more » « less
-
Abstract Harvesting waste heat for useful purposes is an essential component of improving the efficiency of primary energy utilization. Today, approaches such as pyroelectric energy conversion are receiving renewed interest for their ability to turn wasted energy back into useful energy. From this perspective, the need for these approaches, the basic mechanisms and processes underlying their operation, and the material and device requirements behind pyroelectric energy conversion are reviewed, and the potential for advances in this area is also discussed.more » « less
-
Abstract Income-based energy poverty metrics ignore people’s behavior patterns, particularly reducing energy consumption to limit financial stress. We investigate energy-limiting behavior in low-income households using a residential electricity consumption dataset. We first determine the outdoor temperature at which households start using cooling systems, the inflection temperature. Our relative energy poverty metric, theenergy equity gap, is defined as the difference in the inflection temperatures between low and high-income groups. In our study region, we estimate the energy equity gap to be between 4.7–7.5 °F (2.6–4.2 °C). Within a sample of 4577 households, we found 86 energy-poor and 214 energy-insecure households. In contrast, the income-based energy poverty metric, energy burden (10% threshold), identified 141 households as energy-insecure. Only three households overlap between our energy equity gap and the income-based measure. Thus, the energy equity gap reveals a hidden but complementary aspect of energy poverty and insecurity.more » « less
An official website of the United States government
