We study the relationship between the dynamics of the action $$\alpha$$ of a discrete group $$G$$ on a von Neumann algebra $$M$$, and structural properties of the associated crossed product inclusion $$L(G) \subseteq M \rtimes_\alpha G$$, and its intermediate subalgebras. This continues a thread of research originating in classical structural results for ergodic actions of discrete, abelian groups on probability spaces. A key tool in the setting of a noncommutative dynamical system is the set of quasinormalizers for an inclusion of von Neumann algebras. We show that the von Neumann algebra generated by the quasinormalizers captures analytical properties of the inclusion $$L(G) \subseteq M \rtimes_\alpha G$$ such as the Haagerup Approximation Property, and is essential to capturing ``almost periodic" behavior in the underlying dynamical system. Our von Neumann algebraic point of view yields a new description of the Furstenberg-Zimmer distal tower for an ergodic action on a probability space, and we establish new versions of the Furstenberg-Zimmer structure theorem for general, tracial $W^*$-dynamical systems. We present a number of examples contrasting the noncommutative and classical settings which also build on previous work concerning singular inclusions of finite von Neumann algebras.
more »
« less
Synchronizing dynamical systems: Their groupoids and C*-algebras
Building on work of Ruelle and Putnam in the Smale space case, Thomsen defined the homoclinic and heteroclinic -algebras for an expansive dynamical system. In this paper we define a class of expansive dynamical systems, called synchronizing dynamical systems, that exhibit hyperbolic behavior almost everywhere. Synchronizing dynamical systems generalize Smale spaces (and even finitely presented systems). Yet they still have desirable dynamical properties such as having a dense set of periodic points. We study various -algebras associated with a synchronizing dynamical system. Among other results, we show that the homoclinic algebra of a synchronizing system contains an ideal which behaves like the homoclinic algebra of a Smale space.
more »
« less
- Award ID(s):
- 2000057
- PAR ID:
- 10589075
- Publisher / Repository:
- American Mathematical Society
- Date Published:
- Journal Name:
- Transactions of the American Mathematical Society
- ISSN:
- 0002-9947
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider synthetic materials consisting of self-coupled identical resonators carrying classical internal degrees of freedom. The architecture of such material is specified by the positions and orientations of the resonators. Our goal is to calculate the smallest C*-algebra that covers the dynamical matrices associated to a fixed architecture and adjustable internal structures. We give the answer in terms of a groupoid C*-algebra that can be canonically associated to a uniformly discrete subset of the group of isometries of the Euclidean space. Our result implies that the isomorphism classes of these C*-algebras split these architected materials into classes containing materials that are identical from the dynamical point of view.more » « less
-
Abstract We construct uncountably many mutually nonisomorphic simple separable stably finite unital exact C*-algebras that are not isomorphic to their opposite algebras. In particular, we prove that there are uncountably many possibilities for the $$K_0$$-group, the $$K_1$$-group, and the tracial state space of such an algebra. We show that these C*-algebras satisfy the Universal Coefficient Theorem, which is new even for the already known example of an exact C*-algebra nonisomorphic to its opposite algebra produced in an earlier work.more » « less
-
We study quotients of the Toeplitz C*-algebra of a random walk, similar to those studied by the author and Markiewicz for finite stochastic matrices. We introduce a new Cuntz-type quotient C*-algebra for random walks that have convergent ratios of transition probabilities. These C*-algebras give rise to new notions of ratio limit space and boundary for such random walks, which are computed by appealing to a companion paper by Woess. Our combined results are leveraged to identify a unique symmetry-equivariant quotient C*-algebra for any symmetric random walk on a hyperbolic group, shedding light on a question of Viselter on C*-algebras of subproduct systems.more » « less
-
We develop an algebraic framework for sequential data assimilation of partially observed dynamical systems. In this framework, Bayesian data assimilation is embedded in a nonabelian operator algebra, which provides a representation of observables by multiplication operators and probability densities by density operators (quantum states). In the algebraic approach, the forecast step of data assimilation is represented by a quantum operation induced by the Koopman operator of the dynamical system. Moreover, the analysis step is described by a quantum effect, which generalizes the Bayesian observational update rule. Projecting this formulation to finite-dimensional matrix algebras leads to computational schemes that are i) automatically positivity-preserving and ii) amenable to consistent data-driven approximation using kernel methods for machine learning. Moreover, these methods are natural candidates for implementation on quantum computers. Applications to the Lorenz 96 multiscale system and the El Niño Southern Oscillation in a climate model show promising results in terms of forecast skill and uncertainty quantification.more » « less
An official website of the United States government

