skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bio-inspired in silico microswimmer: Run and tumble kinematics
We present an in silico microswimmer motivated by peritrichous bacteria, E. coli, which can run and tumble by spinning their flagellar motors counterclockwise (CCW) or clockwise (CW). Runs are the directed movement driven by a flagellar bundle, and tumbles are reorientations of cells caused by some motors' reversals from CCW to CW. In a viscous fluid without obstacles, our simulations reveal that material properties of the hook and the counterrotation of the cell body are important factors for efficient flagellar bundling and that longer hooks in mutant cell models create an instability and disrupt the bundling process, resulting in a limited range of movement. In the presence of a planar wall, we demonstrate that microswimmers can explore environment near surface by making various types of tumble events as they swim close to the surface. In particular, the variation of tumble duration can lead the microswimmer to run in a wide range of direction. However, we find that cells near surface stay close to the surface even after tumbles, which suggests that the tumble motion may not promote cells' escape from the confinement but promote biofilm formation.  more » « less
Award ID(s):
1853591
PAR ID:
10589120
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Physics of Fluids
Volume:
35
Issue:
3
ISSN:
1070-6631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis Rhagovelia oriander is a freshwater water strider native to the rivers and streams of North and South America, known for its distinctive skating movement on the water’s surface. This movement resembles the correlated random-walk pattern seen in microorganisms such as Escherichia coli. Previous studies have primarily focused on limb adaptations and biomechanics, leaving the ecological significance inadequately addressed. We combine field observations with controlled laboratory experiments using a flow mill to investigate the dynamics of R. oriander under typical flow conditions. Our findings indicate that this insect exhibits a two-dimensional run-and-tumble motion, often incorporating lateral tumbles following straight runs (run distance: $$30.7\pm 9.3$$ mm). We find that this behavior is resilient to changes in flow speed. In-silico simulations of particle interception demonstrated that this locomotion method enhances encounter rates compared to linear movement, particularly when the simulated food particle is following a rapid flow field. Our results document run-and-tumble locomotion in a millimeter-scale organism, showcasing a unique example of convergent behavior across diverse taxonomic groups and providing valuable insights into locomotion ecology while serving as a source of inspiration for bioinspired robotics and environmental exploration algorithms. 
    more » « less
  2. Abstract Lophotrichous bacteria swim through fluid by rotating their flagellar bundle extended collectively from one pole of the cell body. Cells experience modes of motility such as push, pull, and wrapping, accompanied by pauses of motor rotation in between. We present a mathematical model of a lophotrichous bacterium and investigate the hydrodynamic interaction of cells to understand their swimming mechanism. We classify the swimming modes which vary depending on the bending modulus of the hook and the magnitude of applied torques on the motor. Given the hook’s bending modulus, we find that there exist corresponding critical thresholds of the magnitude of applied torques that separate wrapping from pull in CW motor rotation, and overwhirling from push in CCW motor rotation, respectively. We also investigate reoriented directions of cells in three-dimensional perspectives as the cell experiences different series of swimming modes. Our simulations show that the transition from a wrapping mode to a push mode and pauses in between are key factors to determine a new path and that the reoriented direction depends upon the start time and duration of the pauses. It is also shown that the wrapping mode may help a cell to escape from the region where the cell is trapped near a wall. 
    more » « less
  3. Bacteria thrive in anisotropic media such as biofilms, biopolymer solutions, and soil pores. In strongly mechanically anisotropic media, physical interactions force bacteria to swim along a preferred direction rather than to execute the three-dimensional random walk due to their run-and-tumble behavior. Despite their ubiquity in nature and importance for human health, there is little understanding of bacterial mechanisms to navigate these media while constrained to one-dimensional motion. Using a biocompatible liquid crystal, we discovered two mechanisms used by bacteria to switch directions in anisotropic media. First, the flagella assemble in bundles that work against each other from opposite ends of the cell body, and the dominating side in this flagellar “Tug-of-Oars” propels the bacterium along the nematic direction. Bacteria frequently revert their swimming direction 180 by a mechanism of flagellar buckling and reorganization on the opposite side of the cell. The Frank elastic energies of the liquid crystal dictate the minimum compression for the Euler buckling of a flagellum. Beyond a critical elasticity of the medium, flagellar motors cannot generate the necessary torque for flagellar buckling, and bacteria are stuck in their configuration. However, we found that bacteria can still switch swimming directions using a second mechanism where individual bundles alternate their rotation. Our results shed light on bacterial strategies to navigate anisotropic media and give rise to questions about sensing environmental cues and adapting at the level of flagellar bundles. The two adaptation mechanisms found here support the use of biocompatible liquid crystals as a synthetic model for bacterial natural environments. Published by the American Physical Society2024 
    more » « less
  4. In unconfined environments, bacterial motility patterns are an explicit expression of the internal states of the cell. Bacteria operating a run-and-tumble behavioral program swim forward when in a ‘run’ state, and are stalled in place when in a reorienting ‘tumble’ state. However, in natural environments, motility dynamics often represent a convolution of bacterial behavior and environmental constraints. Recent investigations showed thatEscherichia coliswimming through highly confined porous media exhibit extended periods of ‘trapping’ punctuated by forward ‘hops’, a seemingly drastic restructuring of run-and-tumble behavior. We introduce a microfluidic device to systematically explore bacterial movement in a range of spatially structured environments, bridging the extremes of unconfined and highly confined conditions. We observe that trajectories reflecting unconstrained expression of run-and-tumble behavior and those reflecting ‘hop-and-trap’ dynamics coexist in all structured environments considered, with ensemble dynamics transitioning smoothly between these two extremes. We present a unifying ‘swim-and-stall’ framework to characterize this continuum of observed motility patterns and demonstrate that bacteria employing a consistent set of behavioral rules can present motility patterns that smoothly transition between the two extremes. Our results indicate that the control program underlying run-and-tumble motility is robust to changes in the environment, allowing flagellated bacteria to navigate and adapt to a diverse range of complex, dynamic habitats using the same set of behavioral rules. 
    more » « less
  5. Coupling of motor proteins within arrays drives muscle contraction, flagellar beating, chromosome segregation, and other biological processes. Current models of motor coupling invoke either direct mechanical linkage or protein crowding, which rely on short-range motor–motor interactions. In contrast, coupling mechanisms that act at longer length scales remain largely unexplored. Here we report that microtubules can physically couple motor movement in the absence of detectable short-range interactions. The human kinesin-4 Kif4A changes the run length and velocity of other motors on the same microtubule in the dilute binding limit, when approximately 10-nm–sized motors are much farther apart than the motor size. This effect does not depend on specific motor–motor interactions because similar changes in Kif4A motility are induced by kinesin-1 motors. A micrometer-scale attractive interaction potential between motors is sufficient to recreate the experimental results in a biophysical model. Unexpectedly, our theory suggests that long-range microtubule-mediated coupling affects not only binding kinetics but also motor mechanochemistry. Therefore, the model predicts that motors can sense and respond to motors bound several micrometers away on a microtubule. Our results are consistent with a paradigm in which long-range motor interactions along the microtubule enable additional forms of collective motor behavior, possibly due to changes in the microtubule lattice. 
    more » « less