skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The evolution of fast turbulent deflagrations to detonations
We use advanced experimental techniques to explore turbulence-induced deflagration-to-detonation transition (tDDT) in hydrogen–air mixtures. We analyze the full sequence of turbulent flame evolution from fast deflagration-to-detonation using simultaneous direct measurements of pressure, turbulence, and flame, shock, and flow velocities. We show that fast turbulent flames that accelerate and develop shocks are characterized by turbulent flame speeds that exceed the Chapman–Jouguet deflagration speed in agreement with the tDDT theory and direct numerical simulation (DNS) results. Velocity and pressure evolutions are provided to detail the governing mechanisms that drive turbulent flame acceleration. Turbulent flame speeds and fluctuations are examined to reveal flow field characteristics of the tDDT process. This work contributes to the understanding of fundamental mechanisms responsible for spontaneous initiation of detonations by fast turbulent flames.  more » « less
Award ID(s):
1914453
PAR ID:
10589127
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Physics of Fluids
Volume:
35
Issue:
4
ISSN:
1070-6631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work characterizes the compressibility dynamics in turbulent fast flames for a range of turbulent flame speeds. These turbulent fast flames experience increased effects of compressibility through the formation of strong shocks and may develop a runaway acceleration combined with a pressure buildup that leads to turbulence induced deflagration-to-detonation transition (tDDT). Simultaneous high-speed particle image velocimetry, OH* chemiluminescence, schlieren, and pressure measurements are used to examine the reacting flow field and flame dynamics. We examine flames with turbulent flame speeds ranging from 100 to 600 m/s. At lower turbulent flame speeds, the flame is not able to produce favorable background conditions for deflagration-to-detonation transition (DDT) onset, and thus flame compressibility and turbulence amplification are less dominant, resulting in a weaker acoustic coupling between the flame and compressed region. As the turbulent burning velocities exceed the Chapman–Jouguet deflagration speed, favorable background conditions are produced, as we observe flame-generated shocks and flame-generated turbulence with higher turbulent velocities and larger turbulent scales. At this regime, the flame is categorized to be at the runaway transition regime that leads to tDDT. 
    more » « less
  2. One of the fundamental mechanisms for detonation initiation is deflagration-to-detonation transition (DDT). This research experimentally explores the runaway condition for highly turbulent fast flames before DDT, which are characterized by extremely high turbulent flame speeds. Such fast turbulent flames experience increased effects of compressibility and may develop a runaway acceleration combined with a pressure buildup that leads to a turbulence-induced DDT (tDDT) mechanism that has been recently reported. The flame dynamics and the associated reacting flow field are characterized using simultaneous high-speed particle image velocimetry, OH*chemiluminescence, pressure measurements, and schlieren imaging. We study the flow-field conditions for runaway acceleration of fast turbulent flames and effects of compressibility on the evolution of these flames. The locally measured turbulent flame speed is found to be greater than that of a Chapman–Jouguet deflagration speed, which places the flame in the runaway transition regime that would eventually lead to a detonation. 
    more » « less
  3. null (Ed.)
    It has been suggested that a cellularly unstable laminar flame, which is freely propagating in unbounded space, can accelerate and evolve into a turbulent flame with the neighbouring flow exhibiting the basic characteristics of turbulence. Famously known as self-turbulization , this conceptual transition in the flow regime, which arises from local interactions between the propagating wrinkled flamefront and the flow, is critical in extreme events such as the deflagration-to-detonation transition (DDT) leading to supernova explosions. Recognizing that such a transition in the flow regime has not been conclusively demonstrated through experiments, in this work, we present experimental measurements of flow characteristics of flame-generated ‘turbulence’ for expanding cellular laminar flames. The energy spectra of such ‘turbulence’ at different stages of cellular instability are analysed. A subsequent scaling analysis points out that the observed energy spectra are driven by the fractal topology of the cellularly unstable flamefront. 
    more » « less
  4. Abstract In this study, the highly nonlinear and multi-scale flame-turbulence interactions prevalent in turbulent premixed flames are examined by using direct numerical simulation (DNS) datasets to understand the effects of increase in pressure and changes in the characteristic scale ratios at high pressure. Such flames are characterized by length-scale ratio (ratio of integral length scale and laminar thermal flame thickness) and velocity-scale ratio (ratio of turbulence intensity and laminar flame speed). A canonical test configuration corresponding to an initially laminar methane/air lean premixed flame interacting with decaying isotropic turbulence is considered. We consider five cases with the initial Karlovitz number of 18, 37, 126, and 260 to examine the effects of an increase in pressure from 1 to 10 atm with fixed turbulence characteristics and at a fixed Karlovitz number, and the changes to characteristic scale ratios at the pressure of 10 atm. The increase in pressure for fixed turbulence characteristics leads to enhanced flame broadening and wrinkling due to an increase in the range of energetic scales of motion. This further manifests into affecting the spatial and state-space variation of thermo-chemical quantities, single point statistics, and the relationship of heat-release rate to the flame curvature and tangential strain rate. Although these results can be inferred in terms of an increase in Karlovitz number, the effect of an increase in pressure at a fixed Karlovitz number shows differences in the spatial and state-space variations of thermo-chemical quantities and the relationship of the heat release rate with the curvature and tangential strain rate. This is due to a higher turbulent kinetic energy associated with the wide range of scales of motion at atmospheric pressure. In particular, the magnitude of the correlation of the heat release rate with the curvature and the tangential strain rate tend to decrease and increase, respectively, with an increase in pressure. Furthermore, the statistics of the flame-turbulence interactions at high pressure also show sensitivity to the changes in the characteristic length- and velocity-scale ratios. The results from this study highlight the need to accurately account for the effects of pressure and characteristic scales for improved modeling of such flames. 
    more » « less
  5. The objective of this work is to provide physical insight into the mechanisms governing flame–turbulence interactions and explore the impact of the ubiquitous Darrieus–Landau instability on the propagation. It is based on the hydrodynamic theory of premixed flames that considers the flame thickness much smaller than all other fluidynamical length scales. In this asymptotic limit, the flame is thus confined to a surface whilst the diffusion and reaction processes occurring inside the flame zone are accounted for by two parameters: the unburned-to-burned density ratio and the Markstein length. The robust model, which is free of phenomenology and turbulence modelling assumptions, makes transparent the mutual interactions between the flame and the fluid flow, and permits examining trends in flame and flow characteristics while varying the turbulence intensity and mixture properties. It is used in this study to examine the morphological changes of the flame surface that result from the intertwined effects of the turbulence and instability, as demonstrated by the local displacement and curvature of the flame front, the extent of wrinkling and folding of the flame surface, and the overall flame brush thickness. It also provides a direct evaluation of the turbulent flame speed and its dependence on the mean flame curvature and on the hydrodynamic strain that it experiences. Also discussed are the effects of the flame on the flow by examining the various mechanisms of enstrophy and scalar gradient production/destruction, the degree of anisotropy created in the burned gas, and the restructuring of the vortical motion beyond the flame. 
    more » « less