skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 25, 2026

Title: The origin of sulfur in Canary Island magmas and its implications for Earth’s deep sulfur cycle
The global sulfur cycle plays a critical role in the redox evolution of Earth’s surface and upper mantle, yet the distribution and origin of sulfur in the mantle remains largely unconstrained. El Hierro is a volcanic island in the Canary archipelago that is fed by sulfur-rich magmas. To constrain the origin of sulfur in these melts, we combine in situ sulfur isotope analyses with regression modeling. We calculate that undegassed El Hierro melts have δ34S values of 0 ± 2‰. The average δ34S of undegassed El Hierro melts is 0.3‰ to 1‰ higher than magmas erupting at mid-ocean ridges. Mass balance calculations reveal that El Hierro’s mantle source contains 310 ± 120 μg/g sulfur and that on average 60% of sulfur in the source is of recycled origin. This recycled material should contain >1,800 μg/g sulfur to satisfy isotopic constraints on its mass fraction in the mantle source. The sulfur and oxygen isotopic signature in serpentinites and sediments deviate significantly from the upper mantle, making them unsuitable candidates for the recycled material. An oxidized partial melt of recycled oceanic crust that retained one third of its sulfur budget after subduction zone processing can explain excess sulfur in the Canary Island mantle. Recycled oceanic crust is expected to contain sulfur as sulfide, which is not capable of oxidizing the mantle. The presence of ferric iron in the recycled component is necessary to produce metasomatic melts that are oxidizing enough to carry sufficient sulfur into the mantle source of ocean island basalts.  more » « less
Award ID(s):
1944723
PAR ID:
10589150
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
PNAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
122
Issue:
12
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Volcanic rocks erupted among Pitcairn seamounts sample a mantle plume that exhibits an extreme Enriched Mantle-1 signature. The origin of this peculiar mantle endmember remains contentious, and could involve the recycling of marine sediments of Archean or Proterozoic ages, delaminated units from the lower continental crust, or metasomatized peridotites from a lithospheric mantle. Here, we report the sulfur multi-isotopic signature (32S, 33S, 34S, 36S) of 15 fresh submarine basaltic glasses from three Pitcairn seamounts. We observe evidence for magmatic degassing of sulfur from melts erupted ∼2,000 meters below seawater level (mbsl). Sulfur concentrations are correlated with eruption depth, and range between 1300 ppm S (collected ∼ 2,500 mbsl) and 600 ppm S (∼2,000 mbsl). The δ34S values can be accounted for under equilibrium isotope fractionation during degassing, with αgas-melt between 1.0020 and 1.0001 and starting δ34S values between −0.9‰ and +0.6‰. The δ34S estimates are similar or higher than MORB signatures, suggesting the contribution of recycled sulfur with a ∼ 1‰ 34S enrichment compared to the Pacific upper mantle. The Δ33S and Δ36S signatures average at +0.024±0.007‰ and +0.02±0.07‰ vs. CDT, respectively (all 1σ). Only Δ33S is statistically different from MORB, by +0.02‰. The Δ33S enrichment is invariant across degassing and sulfide segregation. We suggest it reflects a mantle source enrichment rather than a high-temperature fractionation of S in the basalts. Despite the small magnitude of the 33S-36S variations, our data require a substantial amount of recycled sulfur overwhelm the Pitcairn mantle source. We show that models involving metasomatized peridotites, lower crust units, or Archean sediments, may be viable, but are restricted to narrow sets of circumstances. Instead, scenarios involving the contribution of Proterozoic marine sediments appear to be the most parsimonious explanation for the EM-1 signature at Pitcairn. 
    more » « less
  2. Abstract Mantle plumes contain heterogenous chemical components and sample variable depths of the mantle, enabling glimpses into the compositional structure of Earth's interior. In this study, we evaluated ocean island basalts (OIB) from nine plume locations to provide a global and systematic assessment of the relationship betweenfO2and He‐Sr‐Nd‐Pb‐W‐Os isotopic compositions. Ocean island basalts from the Pacific (Austral Islands, Hawaii, Mangaia, Samoa, Pitcairn), Atlantic (Azores, Canary Islands, St. Helena), and Indian Oceans (La Réunion) reveal thatfO2in OIB is heterogeneous both within and among hotspots. Taken together with previous studies, global OIB have elevated and heterogenousfO2(average = +0.5 ∆FMQ; 2SD = 1.5) relative to prior estimates of global mid‐ocean ridge basalts (MORB; average = −0.1 ∆FMQ; 2SD = 0.6), though many individual OIB overlap MORB. Specific mantle components, such as HIMU and enriched mantle 2 (EM2), defined by radiogenic Pb and Sr isotopic compositions compared to other OIB, respectively, have distinctly highfO2based on statistical analysis. ElevatedfO2in OIB samples of these components is associated with higher whole‐rock CaO/Al2O3and olivine CaO content, which may be linked to recycled carbonated oceanic crust. EM1‐type and geochemically depleted OIB are generally not as oxidized, possibly due to limited oxidizing potential of the recycled material in the enriched mantle 1 (EM1) component (e.g., sediment) or lack of recycled materials in geochemically depleted OIB. Despite systematic offset of thefO2among EM1‐, EM2‐, and HIMU‐type OIB, geochemical indices of lithospheric recycling, such as Sr‐Nd‐Pb‐Os isotopic systems, generally do not correlate withfO2
    more » « less
  3. The sulfur isotope composition of volcanic rocks in arcs can be difficult to constrain because significant fractionation can occur during degassing. Mafic and ultramafic cumulates represent the least degassed part of the magmatic arc system, thereby offering an opportunity to investigate undegassed sulfur in arcs. Recent work on high pressure metamorphic rocks has suggested that subducted materials can retain their original isotopic composition to sub-arc depths. In particular, extreme negative δ34S values can be retained in subducted sediments. The purpose of this project is to investigate to what extent these deep subduction zone processes are reflected in the sulfur isotope signature of arc magmas. In the Lesser Antilles arc, there is a gradual decrease in terrigenous sediment being subducted from south to north. An estimated ~15% subducted sediment in the south and ~2% in the north is reflected in the chemical and isotopic composition of the Lesser Antilles arc magmas. Sulfides in these magma- derived cumulates record the earliest stages of magma evolution and are a more faithful monitor of the sulfur isotopic composition of the magma source region in the mantle than erupting lavas. We hypothesize that the decrease in terrigenous sediment being subducted from the south to north will be reflected in the S isotopes in cumulate samples. Samples of mafic and ultramafic cumulates have been collected from fourteen islands across the Lesser Antilles arc. Primary rock types are olivine gabbro, amphibole gabbro, plagioclase gabbro, and olivine gabbronorite. Sulfide minerals include pyrite, chalcopyrite, and pyrrhotite, and typically occur as spherical blebs. Sulfides are found primarily as inclusions in clinopyroxene, amphibole, olivine, and plagioclase. Sulfides occur less frequently as inclusions in magnetite and within the matrix. Analyses of sulfur isotopes in cumulate sulfides are currently underway. The decrease in the amount sediment being subducted from south to north in the Lesser Antilles arc should result in δ34S values that increase from south to north (more sediment subducted = more negative δ34S values). 
    more » « less
  4. null (Ed.)
    Most known porphyry Cu deposits formed in the Phanerozoic and are exclusively associated with moderately oxidized, sulfur-rich, hydrous arc-related magmas derived from partial melting of the asthenospheric mantle metasomatized by slab-derived fluids. Yet, whether similar metallogenic processes also operated in the Precambrian remains obscure. Here we address the issue by investigating the origin, fO2, and S contents of calc-alkaline plutonic rocks associated with the Haib porphyry Cu deposit in the Paleoproterozoic Richtersveld Magmatic Arc (southern Namibia), an interpreted mature island-arc setting. We show that the ca. 1886–1881 Ma ore-forming magmas, originated from a mantle-dominated source with minor crustal contributions, were relatively oxidized (1‒2 log units above the fayalitemagnetite- quartz redox buffer) and sulfur-rich. These results indicate that moderately oxidized, sulfur-rich arc magma associated with porphyry Cu mineralization already existed in the late Paleoproterozoic, probably as a result of recycling of sulfate-rich seawater or sediments from the subducted oceanic lithosphere at that time. 
    more » « less
  5. Abstract Combined Hf-O isotopic analyses of zircons from tuffs and lavas within the Sierra Madre Occidental (SMO) silicic large igneous province are probes of petrogenetic processes in the lower and upper crust. Existing petrogenetic and tectonomagmatic models diverge, having either emphasized significant crustal reworking of hydrated continental lithosphere in an arc above the retreating Farallon slab or significant input of juvenile mantle melts through a slab window into an actively stretching continental lithosphere. New isotopic data are remarkably uniform within and between erupted units across the spatial and temporal extent of the SMO, consistent with homogeneous melt production and evolution. Isotopic values are consistent with enriched mantle magmas (80%) that assimilated Proterozoic paragneisses (~20%) from the lower crust. δ18Ozircon values are consistent with fractionation of mafic magma and not with assimilation of hydrothermally altered upper crust, suggesting that the silicic magmas evolved at depth. Isotopic data agree with previous interpretations where voluminous juvenile melts entered the lithosphere during the transition from a continental arc experiencing slab rollback (Late Eocene) to the arrival of a subducting slab window (Oligocene and Early Miocene) and failure of the upper plate leading to the opening of the Gulf of California (Late Miocene). An anomalously large heat flux and extension of the upper plate allow for the sustained fractionation of the voluminous SMO magmas and assimilation of the lower crust. 
    more » « less