skip to main content


Title: Near-zero 33S and 36S anomalies in Pitcairn basalts suggest Proterozoic sediments in the EM-1 mantle plume
Volcanic rocks erupted among Pitcairn seamounts sample a mantle plume that exhibits an extreme Enriched Mantle-1 signature. The origin of this peculiar mantle endmember remains contentious, and could involve the recycling of marine sediments of Archean or Proterozoic ages, delaminated units from the lower continental crust, or metasomatized peridotites from a lithospheric mantle. Here, we report the sulfur multi-isotopic signature (32S, 33S, 34S, 36S) of 15 fresh submarine basaltic glasses from three Pitcairn seamounts. We observe evidence for magmatic degassing of sulfur from melts erupted ∼2,000 meters below seawater level (mbsl). Sulfur concentrations are correlated with eruption depth, and range between 1300 ppm S (collected ∼ 2,500 mbsl) and 600 ppm S (∼2,000 mbsl). The δ34S values can be accounted for under equilibrium isotope fractionation during degassing, with αgas-melt between 1.0020 and 1.0001 and starting δ34S values between −0.9‰ and +0.6‰. The δ34S estimates are similar or higher than MORB signatures, suggesting the contribution of recycled sulfur with a ∼ 1‰ 34S enrichment compared to the Pacific upper mantle. The Δ33S and Δ36S signatures average at +0.024±0.007‰ and +0.02±0.07‰ vs. CDT, respectively (all 1σ). Only Δ33S is statistically different from MORB, by +0.02‰. The Δ33S enrichment is invariant across degassing and sulfide segregation. We suggest it reflects a mantle source enrichment rather than a high-temperature fractionation of S in the basalts. Despite the small magnitude of the 33S-36S variations, our data require a substantial amount of recycled sulfur overwhelm the Pitcairn mantle source. We show that models involving metasomatized peridotites, lower crust units, or Archean sediments, may be viable, but are restricted to narrow sets of circumstances. Instead, scenarios involving the contribution of Proterozoic marine sediments appear to be the most parsimonious explanation for the EM-1 signature at Pitcairn.  more » « less
Award ID(s):
2052944
NSF-PAR ID:
10318413
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Earth and planetary science letters
Volume:
584
ISSN:
0012-821X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The sulfur isotope composition of volcanic rocks in arcs can be difficult to constrain because significant fractionation can occur during degassing. Mafic and ultramafic cumulates represent the least degassed part of the magmatic arc system, thereby offering an opportunity to investigate undegassed sulfur in arcs. Recent work on high pressure metamorphic rocks has suggested that subducted materials can retain their original isotopic composition to sub-arc depths. In particular, extreme negative δ34S values can be retained in subducted sediments. The purpose of this project is to investigate to what extent these deep subduction zone processes are reflected in the sulfur isotope signature of arc magmas. In the Lesser Antilles arc, there is a gradual decrease in terrigenous sediment being subducted from south to north. An estimated ~15% subducted sediment in the south and ~2% in the north is reflected in the chemical and isotopic composition of the Lesser Antilles arc magmas. Sulfides in these magma- derived cumulates record the earliest stages of magma evolution and are a more faithful monitor of the sulfur isotopic composition of the magma source region in the mantle than erupting lavas. We hypothesize that the decrease in terrigenous sediment being subducted from the south to north will be reflected in the S isotopes in cumulate samples. Samples of mafic and ultramafic cumulates have been collected from fourteen islands across the Lesser Antilles arc. Primary rock types are olivine gabbro, amphibole gabbro, plagioclase gabbro, and olivine gabbronorite. Sulfide minerals include pyrite, chalcopyrite, and pyrrhotite, and typically occur as spherical blebs. Sulfides are found primarily as inclusions in clinopyroxene, amphibole, olivine, and plagioclase. Sulfides occur less frequently as inclusions in magnetite and within the matrix. Analyses of sulfur isotopes in cumulate sulfides are currently underway. The decrease in the amount sediment being subducted from south to north in the Lesser Antilles arc should result in δ34S values that increase from south to north (more sediment subducted = more negative δ34S values). 
    more » « less
  2. Abstract

    Halogens are primarily located within surface reservoirs of the Earth; as such they have proven to be effective tracers for the identification of subducted volatiles within the mantle. Subducting lithologies exhibit a wide variety of halogen compositions, yet the mantle maintains a fairly uniform signature, suggesting halogens may be homogenized during subduction to the mantle or during eruption. Here we present halogen (Cl, Br, and I), K, noble gas, and major and trace element data on olivines from three seamounts along the Hawaiian‐Emperor seamount chain to determine if the deep mantle source has retained evidence of halogen heterogeneities introduced through subduction. High Ni contents indicate that the Hawaiian‐Emperor mantle source contains a recycled oceanic crust component in the form of pyroxenite, which increases from the 46% in the oldest (Detroit) to 70% in the younger seamount (Koko). Detroit seamount retains mid‐ocean ridge basalts (MORB)‐like Br/Cl and I/Cl, while the Br/Cl and I/Cl of Suiko and Koko seamounts are higher than MORB and similar to altered oceanic crust and dehydrated serpentinite. Helium isotopes show a similar evolution, from MORB‐like values at Detroit seamount toward higher values at Suiko and Koko seamounts. The correlation between pyroxenite contributions, Br/Cl, I/Cl, and3He/4He indicates that subducted material has been incorporated into the primordial undegassed Hawaiian mantle plume source. The identification of recycled oceanic crustal signatures in both the trace elements and halogens indicates that subduction and dehydration of altered oceanic crust may exert control on the cycling of volatile elements to the deep mantle.

     
    more » « less
  3. Abstract

    Basalts from the Samoan volcanoes sample contributions from all of the classical mantle endmembers, including extreme EM II and high3He/4He components, as well as dilute contributions from the HIMU, EM I, and DM components. Here, we present multiple sulfur isotope data on sulfide extracted from subaerial and submarine whole rocks (N = 16) associated with several Samoan volcanoes—Vailulu‘u, Malumalu, Malutut, Upolu, Savai‘i, and Tutuila—that sample the full range of geochemical heterogeneity at Samoa and upon exhaustive compilation of S‐isotope data for Samoan lavas, allow for an assessment of the S‐isotope compositions associated with the different mantle components sampled by the Samoan hotspot. We observe variable S concentrations (10–1,000 ppm) and δ34S values (−0.29‰ ± 0.30 to +4.84‰ ± 0.30, 2σ). The observed variable S concentrations are likely due to sulfide segregation and degassing processes. The range in δ34S reflects mixing between the mantle origin and recycled components, and isotope fractionations associated with degassing. The majority of samples reveal Δ33S within uncertainty of Δ33S = 0‰ ± 0.008. Important exceptions to this observation include: (a) a negative Δ33S (−0.018‰ ± 0.008, 2σ) from a rejuvenated basalt on Upolu island (associated with a diluted EM I component) and (b) previously documented small (but resolvable) Δ33S values (up to +0.027 ± 0.016) associated with the Vai Trend (associated with a diluted HIMU component). The variability we observed in Δ33S is interpreted to reflect contributions of sulfur of different origins and likely multiple crustal protoliths. Δ36S versus Δ33S relationships suggest all recycled S is of post‐Archean origin.

     
    more » « less
  4. This Chapter considers triple oxygen isotope variations and their 4 Gyr temporal evolution in bulk siliciclastic sedimentary rocks and in granites. The d18O and D'17O values provide new insights into weathering in the modern and ancient hydrosphere and coeval crustal petrogenesis. We make use of the known geological events and processes that affect the rock cycle: supercontinent assembly and breakup that influence continent-scale and global climate, the fraction of the exposed crust undergoing weathering, and isotopic values of precipitation. New data from a 5000 m Texas drillhole into the Oligocene Frio Formation demonstrate minimal isotopic shifts from mudrocks to shales during diagenesis, mostly related to expulsion of water from smectite-rich loosely cemented sediment and its conversion to illite-rich shale. Inversion of triple oxygen isotope fractionations return isotopic values and temperatures along the hole depth that are more consistent with weathering conditions in the Oligocene and modern North America (d18O = -7 to -15‰, and T of +15 to +45°C) rather than d18O from 8 to 10‰ diagenetic water in the drill hole at 175-195°C. More precise T and d18Owater are obtained where the chemical index of alteration (CIA) based detrital contribution is subtracted from these sediments. Triple oxygen isotopes from suspended sediments in major world rivers record conditions (T and d18Ow) of their watersheds, and not the composition of bedrock because weathering is water-dominated. In parallel, the Chapter presents new analyses of 100 granites, orthogneisses, migmatites, tonalite-trondhjemite-granodiorite (TTG), and large-volume ignimbrites from around the world that range in age from 4 Ga to modern. Most studied granites are orogenic and anatectic in origin and represent large volume remelting/assimilation of shales and other metasediments; the most crustal and high-d18O of these are thus reflect and record the average composition of evolving continental crust. Granites also develop a significant progressive increase in d18O values from 6-7‰ (4-2.5 Ga) to 10-13‰ (~1.8-1.2 Ga) after which d18O stays constant or even decreases. More importantly, we observe a moderate -0.03‰ step-wise decrease in D'17O between 2.1 and 2.5 Ga, which is about half of the step-wise decrease observed in shales over this time interval. We suggest that granites, as well as shales, record the significant advent and greater volumetric appearance of low-D'17O, high-d18O weathering products (shales) altered by meteoric waters upon rapid emergence of large land masses at ~2.4 Ga, although consider alternative interpretations. These weathering products were incorporated into abundant 2.0-1.8 Ga orogens around the world, where upon remelting, they passed their isotopic signature to the granites. We further observe the dichotomy of high-D'17O Archean shales, and unusually low-D'17O Archean granites. We attribute this to greater contribution from shallow crustal hydrothermal contribution to shales in greenstone belts, while granites in the earliest 3.0-4.0 Ga crust and TTGs require involvement of hydrothermal products with lower-D'17O signatures at moderately high-d18O, which we attribute to secondary silicification of their protoliths before partial melting. The Chapter further discusses evolution of the shale record through geologic history and discusses the step-wise change in d18O and D'17O values at Archean/Proterozoic transition. Denser coverage for shales in the past 1 billion years permits investigation of the rocks and their weathering in the last supercontinent cycle, with observed lighter d18O values, characteristic for the mid-Phanerozoic at the initiation of Gondwana breakup. The continuing increase in d18O values of the shales since 4 Ga is interpreted to reflect accumulation of weathering products via shale accretion to continents, as low-density and buoyant shales tend to not subduct back into the mantle. The rock cycle passes triple oxygen isotopic signatures from precipitation to sedimentary, metasedimentary, and finally to anatectic igneous rocks. Continental crust became progressively heavier in d18O, lighter in D'17O due to incremental accumulation of high-d18O sediments in accretionary wedges. Second-order trends in d18O and D'17O are due to supercontinent cycles and glacial episodes. 
    more » « less
  5. N/A (Ed.)
    Long-lived radiogenic isotopes of abyssal peridotites, residues of MORB extraction, show that the asthenosphere is intrinsically heterogeneous, which is inherited from ancient melting events and crustal recycling during Earth's history. Yet, Mid Ocean Ridge Basalts (MORB) have a rather uniform average composition, suggesting that the variability of their mantle source is concealed during their ascent. Here we document that mantle heterogeneity is exceptionally well preserved in high permeability mantle conduits from the Lanzo South mantle massif, Western Italian Alps. Nd-Hf-Os isotopes of decametre-scale replacive bodies provide evidence for the existence of two generations of mantle channels. The first generation consists of dunites concordant to the main foliation of host peridotites. The replacive dunites include clinopyroxene with MORB-like incompatible element signature and initial (160 Ma) ƐNd and ƐHf ranging from +4 to +7 and from +10 to +15, respectively. The second generation, made up of pyroxene-poor harzburgites discordant to the main foliation, is geochemically depleted in incompatible elements and its clinopyroxene displays highly radiogenic Hf isotopes (initial ƐHf up to +202). The mantle channel heterogeneity is confirmed by Resingle bondOs isotopes and platinum-groups elements. The MORB-type dunites have high Pt, Pd and, locally, Re, and have 187Os/188Os ratios similar to the host peridotite (0.122–0.128). On the other hand, the depleted bodies have lower Pt, Pd and Re, and 187Os/188Os ratios ranging from those of host peridotites (0.124) to highly unradiogenic values (0.118) in the most refractory sample. The preserved heterogeneity in trace elements, PGE, and Nd-Hf-Os isotopes highlights infiltration of melts from a highly heterogeneous mantle, still partially preserved within these mantle bodies. If applied to present-day Mid Ocean Ridges, our model indicates that the isotopic variability of melts migrating through replacive mantle conduits is by far larger than magmas erupted on the seafloor, which implies that diverse mantle components are mainly delivered and homogenised above the crust-mantle boundary. 
    more » « less