This demonstration presents LiTEfoot, an ultra-low power localization system leveraging ambient cellular signals. To address the limitations of traditional GPS-based tracking systems in terms of power consumption and latency, LiTEfoot employs a non-linear transformation of the cellular spectrum to achieve efficient self-localization. Our design uses a simple envelope detector to realize spectrum folding, enabling the identification of multiple active base stations.
more »
« less
This content will become publicly available on November 4, 2025
Poster: Wideband Cellular Sensing for Real-time, Sustainable Geo-localization Tags
This paper presents LiTEfoot, an ultra-low power, wide-area localization system leveraging ambient cellular signals to address the limitations of traditional self-localization systems in terms of power consumption and latency. LiTEfoot uses a non-linear transformation of the cellular synchronization signal to efficiently achieve self-localization by systematically superimposing signals at the baseband. A simple envelope detector is used to realize this non-linear transformation, enabling the identification of multiple active base stations across any cellular band. The system is designed to operate with low power, consuming only 40 𝜇Joules of energy per localization update, achieving a median localization error of 22 meters in urban areas.
more »
« less
- Award ID(s):
- 2238433
- PAR ID:
- 10589168
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400706974
- Page Range / eLocation ID:
- 811 to 813
- Format(s):
- Medium: X
- Location:
- Hangzhou China
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we introduce a low-power wide-area cellular localization system, called LiTEfoot. The core architecture of the radio carefully applies non-linear transform of the entire cellular spectrum to obtain a systematic superimposition of the synchronization signals at the baseband. The system develops methods to simultaneously identify all the base stations that are active at any cellular band from the transformed signal. The radio front end uses a simple envelop detector to realize the non-linear transformation. We build on this low-power radio to implement a self-localization system leveraging ambient 4G-LTE signals. We show that the core system can also be extended to other cellular technologies like 5G-NR and NB-IoT. The prototype achieves a median localization error of 22 meters in urban areas and 50 meters in rural areas. It can sense a 3GHz wideband LTE spectrum in 10ms using non-linear intermodulation while consuming 0.9 mJ of energy for a PCB-based implementation and 40 𝜇J for CMOS simulation. In other words, LiTEfoot tags can last for 11 years on a coin cell while continuously estimating location every 5 seconds. We believe that LiTEfoot will have widespread implications in city-scale asset tracking and other location-based services. The radio architecture can be useful beyond low-power self-localization and can find application in synchronization and communication on battery-less platforms.more » « less
-
This paper presents ISLA, a system that enables low power IoT nodes to self-localize using ambient 5G signals without any coordination with the base stations. ISLA operates by simply overhearing transmitted 5G packets and leverages the large bandwidth used in 5G to compute high-resolution time of flight of the signals. Capturing large 5G bandwidth consumes a lot of power. To address this, ISLA leverages recent advances in MEMS acoustic resonators to design a RF filter that can stretch the effective localization bandwidth to 100 MHz while using 6.25 MHz receivers, improving ranging resolution by 16x. We implement and evaluate ISLA in three large outdoors testbeds and show high localization accuracy that is comparable with having the full 100 MHz bandwidth.more » « less
-
ION ITM (Ed.)This paper describes the development, implementation, and testing of a GNSS jammer localizer using power measurement profiles collected during un-crewed aerial system (UAS) fly-bys. A linearized measurement equation based on the Friis power transmission formula is derived in which RF channel propagation parameters are grouped into a single parameter for estimation. Synchronized power and UAS position measurements are processed in a batch-type sequential non-linear least squares algorithm for simultaneous estimation of static jammer position and received power model parameters. We develop a low size, weight, power, and cost (SWAP-C) quad-rotor UAS test bed that can collect and time-stamp power measurements with UAS position. Since GNSS jamming is illegal, a LoRa 868 MHz transmitter is used as a surrogate GNSS jammer during field testing – providing Received Signal Strength Indicator (RSSI) measurements to the LoRa receiver onboard the UAS. Testing is conducted at the Virginia Tech Kentland Experimental Aerial Systems Lab, where emitter localization is evaluated for three different trajectories. Experimental performance analysis suggests that meter-level localization accuracy is achievable with prior knowledge on source location and by accounting for antenna gain pattern variations over time in the estimation process with a first order Gauss Markov Process.more » « less
-
We propose and experimentally demonstrate an optical pulse sampling method for photonic blind source separation. The photonic system processes and separates wideband signals based on the statistical information of the mixed signals, and thus the sampling frequency can be orders of magnitude lower than the bandwidth of the signals. The ultra-fast optical pulses collect samples of the signals at very low sampling rates, and each sample is short enough to maintain the statistical properties of the signals. The low sampling frequency reduces the workloads of the analog to digital conversion and digital signal processing systems. In the meantime, the short pulse sampling maintains the accuracy of the sampled signals, so the statistical properties of the under-sampled signals are the same as the statistical properties of the original signals. The linear power range measurement shows that the sampling system with ultra-narrow optical pulse achieves a 30dB power dynamic range.more » « less