Scanning tunneling microscopy (STM) offers unparalleled sub-molecular resolution for visualizing surface-bound molecular assemblies. We developed a custom 3D-printed liquid cell that enabled stable, long-duration liquid-phase STM imaging of a metallocene dimer assembled on a highly oriented pyrolytic graphite (HOPG) substrate. High-resolution images revealed two distinct molecular packing structures. However, STM alone is difficult to pinpoint the detailed molecular arrangements, resonance Raman spectroscopy (RRS) was used to provide complementary information. Aided with density functional theory (DFT) calculated RRS, a cis conformer of the metallocene dimer was identified as the more probable form in both crystal and surface-bound states. These findings led to assemblies with cyclopentadienyl rings pointing towards the HOPG, and the carbonyl groups towards the water. This work demonstrates the synergistic power of integrating STM, RRS, and DFT in elucidating molecular assembling structures at the solid–liquid interface.
more »
« less
This content will become publicly available on April 24, 2026
Exploring the Surface Chemistry of Cobalt Porphyrin Complexed with Iodine Using Single Molecule Microscopy and Theory
Understanding the interactions between molecules on surfaces is crucial for advancing technologies in sensing, catalysis, and energy harvesting. In this study we explore the complex surface chemistry resulting from the interaction of Co(II)octaethylporphyrin (CoOEP) and iodine, I2, both in solution and at the phenyloctane/HOPG interface. In pursuit of this goal, we report results from electrochemistry, NMR and UV-Vis spectroscopy, X-ray crystallography, scanning tunneling microscopy (STM), and density functional theory (DFT). Both spectroscopic methods of analysis confirmed that at and above the stoichiometric ratio of one CoOEP to one I2 the reaction product was metal centered CoIII(OEP)I. X-ray crystallography verified that a single iodine is bonded to each cobalt ion in the triclinic, P-1 system. The surface chemistry of CoOEP and I2 is complicated and remarkably dependent on the iodine concentration. STM images of CoOEP and I2 in phenyloctane on highly oriented pyrolytic graphite (HOPG) at low halogen concentrations (1:<2 Co:I ratios) presented random individual Co(OEP)I molecules weakly adsorbed onto a hexagonal (HEX) CoOEP monolayer. Images of 1:2 Co:I ratio solutions, showed phase segregated HEX CoOEP and pseudo-rectangular (REC) Co(OEP)I incorporating one solvent molecule per Co(OEP)I. The REC structure formed in long parallel rows with the number of rows increasing with increasing solution I2. In this case, the presence of CoOEP on the surface was attributed to the spontaneous reduction of Co(OEP)I by the graphite substrate. DFT calculations indicate that the REC Co(OEP)I:PhO form is energetically more stable than the HEX form of Co(OEP)I on HOPG. Experimental STM images and DFT calculated adsorption energies and STM images support our interpretation of the observed structures.
more »
« less
- PAR ID:
- 10589201
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry C
- Volume:
- 129
- Issue:
- 16
- ISSN:
- 1932-7447
- Page Range / eLocation ID:
- 7717 to 7729
- Subject(s) / Keyword(s):
- STM Surface reaction Density functional theory adsorption energy Solvent incorporation polymorphs
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We present a quantitative study comparing the binding of 4-methoxypyridine, MeOPy, ligand to Co( ii )octaethylporphyrin, CoOEP, at the phenyloctane/HOPG interface and in toluene solution. Scanning tunneling microscopy (STM) was used to study the ligand binding to the porphyrin receptors adsorbed on graphite. Electronic spectroscopy was employed for examining this process in fluid solution. The on surface coordination reaction was completely reversible and followed a simple Langmuir adsorption isotherm. Ligand affinities (or Δ G ) for the binding processes in the two different chemical environments were determined from the respective equilibrium constants. The free energy value of −13.0 ± 0.3 kJ mol −1 for the ligation reaction of MeOPy to CoOEP at the solution/HOPG interface is less negative than the Δ G for cobalt porphyrin complexed to the ligand in solution, −16.8 ± 0.2 kJ mol −1 . This result indicates that the MeOPy–CoOEP complex is more stable in solution than on the surface. Additional thermodynamic values for the formation of the surface ligated species (Δ H c = −50 kJ mol −1 and Δ S c = −120 J mol −1 ) were extracted from temperature dependent STM measurements. Density functional computational methods were also employed to explore the energetics of both the solution and surface reactions. At high concentrations of MeOPy the monolayer was observed to be stripped from the surface. Computational results indicate that this is not because of a reduction in adsorption energy of the MeOPy–CoOEP complex. Nearest neighbor analysis of the MeOPy–CoOEP in the STM images revealed positive cooperative ligand binding behavior. Our studies bring new insights to the general principles of affinity and cooperativity in the ligand–receptor interactions at the solution/solid interface. Future applications of STM will pave the way for new strategies designing highly functional multisite receptor systems for sensing, catalysis, and pharmacological applications.more » « less
-
Sn clusters have been grown on highly oriented pyrolytic graphite (HOPG) surfaces and investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations. At low Sn coverages ranging from 0.02-0.25 ML, Sn grows as small clusters that nucleate uniformly on the terraces. This behavior is in contrast with the growth of transition metals such as Pd, Pt, and Re on HOPG, given that these metals form large clusters with preferential nucleation for Pd and Pt at the favored low-coordination step edges. XPS experiments show no evidence of Sn-HOPG interactions, and the activation energy barrier for diffusion calculated for Sn on HOPG (0.06 eV) is lower or comparable to those of Pd, Pt and Re (0.04, 0.22, and 0.61 eV, respectively), indicating that the growth of the Sn clusters is not kinetically limited by diffusion on the surface. DFT calculations of the binding energy/atom as a function of cluster size demonstrate that the energies of the Sn clusters on HOPG are similar to that of Sn atoms in the bulk for Sn clusters larger than 10 atoms, whereas the Pt, Pd, and Re clusters on HOPG have energies that are 1-2 eV higher than in the bulk. Thus, there is no thermodynamic driving force for Sn atoms to form clusters larger than 10 atoms on HOPG, unlike for Pd, Pt, and Re atoms, which minimize their energy by aggregating into larger, more bulk-like clusters. In addition, annealing the Sn/HOPG clusters to 800 K and 950 K does not increase the cluster size but instead removes the larger clusters, while Sn deposition at 810 K induces the appearance of protrusions that are believed to be from subsurface Sn. DFT studies indicate that it is energetically favorable for a Sn atom to exist in the subsurface layer only when the Sn atom is located at a subsurface vacancy.more » « less
-
A comprehensive Scanning Tunneling Microscopy (STM)-driven ab initio investigation was conducted to explore the effects of peripheral substitution and central metalation on the molecular self-assembly of phthalocyanines on highly oriented pyrolytic graphite (HOPG). This study reports, for the first time, the self-assembly behavior of phthalocyanines with phenoxy and ethoxy substitutions and Co and Mg as central metals. Through periodic boundary simulations, we demonstrate that the peripheral substitutions significantly influence the energetic stability and monolayer structure, while central metal variations play a minor role. Our findings suggest that phthalocyanines with identical peripheral substitutions exhibit similar unit cell structures on Highly Oriented Pyrolytic Graphite (HOPG), regardless of the central metal. Furthermore, while substituent positional isomerism does not significantly impact the adsorption energy, the orientation of the peripheral substituents critically affects intermolecular interactions, influencing the stability of the monolayers. The study also reveals that octa-substituted phthalocyanines, such as H2Pc(OPh)8, form more stable, well-packed monolayers compared to tetra-substituted derivatives, like H2Pc(OEt)4, which exhibit phase segregation and disorder. Additionally, solvent molecules such as phenyl octane (PhOct) stabilize the disordered H2Pc(OEt)4monolayers by filling cavities between molecules. These results offer valuable insights into the design principles for engineering stable phthalocyanine monolayers, contributing to advancements in surface chemistry and materials science.more » « less
-
Density functional theory (DFT) is used to investigate the conversion from a solvent incorporated pseudo-polymorph into a single component monolayer. Calculations of thermodynamic properties both for the surfaces in contact with gas phase and with solvent are reported. In the case of wetted surfaces, a simple bond-additivity model, first proposed by Campbell and modified here, is used to augment the DFT calculations. The model predicts a dramatic reduction in desorption energies in solvent as compared to gas phase. Eyring’s reaction rate theory is used to predict limiting desorption rates for guest (solvent) molecules from the pockets in the pseudo-polymorph and for cobalt octaethylporphyrin (COEP) molecules in all structures. The pseudo-polymorph studied here is a nearly rectangular lattice (REC) composed of two CoOEP and 2 molecules of either 1,2,4-trichlorobenzene (TCB) or toluene (TOL) supported on 63 atoms of Au(111). At sufficiently high initial concentrations of CoOEP, only a hexagonal unit cell (HEX) with two molecules of CoOEP, supported on 50 atoms of gold is observed. Experimentally, the TCB-REC structure is more stable than the TOL-REC structure existing in solution at initial mM concentrations of CoOEP in TCB as opposed to initial M concentration of CoOEP in toluene. Calculations here show that the HEX structure is the thermodynamically stable structure at all practical concentrations of CoOEP. Once the REC structure forms kinetically at low concentration because of the vast excess of solvent on the surface, it is difficult to convert to the more stable HEX structure. The difference in stability is primarily due to the difference in electronic adsorption energy of the solvents (TOL or TCB) and to the very low desorption rate of CoOEP. The adsorption energy of TCB has two important contributors: the adsorption energy onto Au alone, and the intermolecular interactions between TCB and the CoOEP host lattice. Neither factor can be neglected. We also find that planar adsorption of both TOL and TCB on Au(111) is the energetically preferred orientation when space is available on the surface. Rates of desorption are very sensitive to the solvent free activation energy and to the thermodynamic parameters required to convert the solvent free activation energy to one for the solvated surface. Small changes in the computed energy (of the order of 5%) can lead to one order of magnitude change in rates. Further, the solvation model used does not provide the barrier to adsorption in solution needed to determine values for the desorption activation energy. Thus, the rates computed here for desorption into solvent are limiting values.more » « less
An official website of the United States government
