skip to main content


Title: Quantifying reversible nitrogenous ligand binding to Co( ii ) porphyrin receptors at the solution/solid interface and in solution
We present a quantitative study comparing the binding of 4-methoxypyridine, MeOPy, ligand to Co( ii )octaethylporphyrin, CoOEP, at the phenyloctane/HOPG interface and in toluene solution. Scanning tunneling microscopy (STM) was used to study the ligand binding to the porphyrin receptors adsorbed on graphite. Electronic spectroscopy was employed for examining this process in fluid solution. The on surface coordination reaction was completely reversible and followed a simple Langmuir adsorption isotherm. Ligand affinities (or Δ G ) for the binding processes in the two different chemical environments were determined from the respective equilibrium constants. The free energy value of −13.0 ± 0.3 kJ mol −1 for the ligation reaction of MeOPy to CoOEP at the solution/HOPG interface is less negative than the Δ G for cobalt porphyrin complexed to the ligand in solution, −16.8 ± 0.2 kJ mol −1 . This result indicates that the MeOPy–CoOEP complex is more stable in solution than on the surface. Additional thermodynamic values for the formation of the surface ligated species (Δ H c = −50 kJ mol −1 and Δ S c = −120 J mol −1 ) were extracted from temperature dependent STM measurements. Density functional computational methods were also employed to explore the energetics of both the solution and surface reactions. At high concentrations of MeOPy the monolayer was observed to be stripped from the surface. Computational results indicate that this is not because of a reduction in adsorption energy of the MeOPy–CoOEP complex. Nearest neighbor analysis of the MeOPy–CoOEP in the STM images revealed positive cooperative ligand binding behavior. Our studies bring new insights to the general principles of affinity and cooperativity in the ligand–receptor interactions at the solution/solid interface. Future applications of STM will pave the way for new strategies designing highly functional multisite receptor systems for sensing, catalysis, and pharmacological applications.  more » « less
Award ID(s):
1800070
NSF-PAR ID:
10245270
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
22
Issue:
42
ISSN:
1463-9076
Page Range / eLocation ID:
24226 to 24235
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. STM can effectively probe single porphyrin receptor-ligand binding events at the solution/solid interface and provide both qualitative and quantitative information about molecule binding affinity, reaction kinetics and thermodynamics. 
    more » « less
  2. Abstract

    We have been interested in the development of rubisco‐based biomimetic systems for reversible CO2capture from air. Our design of the chemical CO2capture and release (CCR) system is informed by the understanding of the binding of the activator CO2(ACO2) in rubisco (ribulose‐1,5‐bisphosphate carboxylase/oxygenase). The active site consists of the tetrapeptide sequence Lys‐Asp‐Asp‐Glu (or KDDE) and the Lys sidechain amine is responsible for the CO2capture reaction. We are studying the structural chemistry and the thermodynamics of CO2capture based on the tetrapeptide CH3CO−KDDE−NH2(“KDDE”) in aqueous solution to develop rubisco mimetic CCR systems. Here, we report the results of1H NMR and13C NMR analyses of CO2capture by butylamine and by KDDE. The carbamylation of butylamine was studied to develop the NMR method and with the protocol established, we were able to quantify the oligopeptide carbamylation at much lower concentration. We performed a pH profile in the multi equilibrium system and measured amine species and carbamic acid/carbamate species by the integration of1H NMR signals as a function of pH in the range 8≤pH≤11. The determination of ΔG1(R) for the reaction R−NH2+CO2R−NH−COOH requires the solution of a multi‐equilibrium equation system, which accounts for the dissociation constantsK2andK3controlling carbonate and bicarbonate concentrations, the acid dissociation constantK4of the conjugated acid of the amine, and the acid dissociation constantK5of the alkylcarbamic acid. We show how the multi‐equilibrium equation system can be solved with the measurements of the daughter/parent ratioX, the knowledge of the pH values, and the initial concentrations [HCO3]0and [R‐NH2]0. For the reaction energies of the carbamylations of butylamine and KDDE, our best values are ΔG1(Bu)=−1.57 kcal/mol and ΔG1(KDDE)=−1.17 kcal/mol. Both CO2capture reactions are modestly exergonic and thereby ensure reversibility in an energy‐efficient manner. These results validate the hypothesis that KDDE‐type oligopeptides may serve as reversible CCR systems in aqueous solution and guide designs for their improvement.

     
    more » « less
  3. Charge densities of cationic polymers adsorbed to lipid bilayers are estimated from second harmonic generation (SHG) spectroscopy and quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. The systems surveyed included poly(vinylamine hydrochloride) (PVAm), poly(diallyldimethylammonium chloride) (PDADMAC), poly- l -lysine (PLL), and poly- l -arginine (PLR), as well as polyalcohol controls. Upon accounting for the number of positive charges associated with each polyelectrolyte, the binding constants and apparent free energies of adsorption as estimated from SHG data are comparable despite differences in molecular masses and molecular structure, with Δ G ads values of −61 ± 2, −58 ± 2, −57 ± 1, −52 ± 2, −52 ± 1 kJ mol −1 for PDADMAC 400 , PDADMAC 100 , PVAm, PLL, and PLR, respectively. Moreover, we find charge densities for polymer adlayers of approximately 0.3 C m −2 for poly(diallyldimethylammonium chloride) while those of poly(vinylamine) hydrochloride, poly- l -lysine, and poly- l -arginine are approximately 0.2 C m −2 . Time-dependent studies indicate that polycation adsorption to supported lipid bilayers is only partially reversible for most of the polymers explored. Poly(diallyldimethylammonium chloride) does not demonstrate reversible binding even over long timescales (>8 hours). 
    more » « less
  4. Abstract

    Reaction of {LiC6H2−2,4,6‐Cyp3⋅Et2O}2(Cyp=cyclopentyl) (1) of the new dispersion energy donor (DED) ligand, 2,4,6‐triscyclopentylphenyl with SnCl2afforded a mixture of the distannene {Sn(C6H2−2,4,6‐Cyp3)2}2(2), and the cyclotristannane {Sn(C6H2−2,4,6‐Cyp3)2}3(3).2is favored in solution at higher temperature (345 K or above) whereas3is preferred near 298 K. Van't Hoff analysis revealed the3to2conversion has a ΔH=33.36 kcal mol−1and ΔS=0.102 kcal mol−1 K−1, which gives a ΔG300 K=+2.86 kcal mol−1, showing that the conversion of3to2is an endergonic process. Computational studies show that DED stabilization in3is −28.5 kcal mol−1per {Sn(C6H2−2,4,6‐Cyp3)2unit, which exceeds the DED energy in2of −16.3 kcal mol−1per unit. The data clearly show that dispersion interactions are the main arbiter of the3to2equilibrium. Both2and3possess large dispersion stabilization energies which suppress monomer dissociation (supported by EDA results).

     
    more » « less
  5. Abstract

    Reaction of {LiC6H2−2,4,6‐Cyp3⋅Et2O}2(Cyp=cyclopentyl) (1) of the new dispersion energy donor (DED) ligand, 2,4,6‐triscyclopentylphenyl with SnCl2afforded a mixture of the distannene {Sn(C6H2−2,4,6‐Cyp3)2}2(2), and the cyclotristannane {Sn(C6H2−2,4,6‐Cyp3)2}3(3).2is favored in solution at higher temperature (345 K or above) whereas3is preferred near 298 K. Van't Hoff analysis revealed the3to2conversion has a ΔH=33.36 kcal mol−1and ΔS=0.102 kcal mol−1 K−1, which gives a ΔG300 K=+2.86 kcal mol−1, showing that the conversion of3to2is an endergonic process. Computational studies show that DED stabilization in3is −28.5 kcal mol−1per {Sn(C6H2−2,4,6‐Cyp3)2unit, which exceeds the DED energy in2of −16.3 kcal mol−1per unit. The data clearly show that dispersion interactions are the main arbiter of the3to2equilibrium. Both2and3possess large dispersion stabilization energies which suppress monomer dissociation (supported by EDA results).

     
    more » « less