Solid inorganic and polymeric electrolytes have the potential to enable rechargeable batteries with higher energy densities, compared to current lithium-ion technology, which uses liquid electrolyte. Inorganic materials such as ceramics and glasses conduct lithium ions well, but they are brittle, which makes incorporation into a battery difficult. Polymers have the flexibility for facile use in a battery, but their transport properties tend to be inferior to inorganics. Thus, there is growing interest in composite electrolytes with inorganic and organic phases in intimate contact. This article begins with a discussion of ion transport in single-phase electrolytes. A dimensionless number (the Newman number) is presented for quantifying the efficacy of electrolytes. An effective medium framework for predicting transport properties of composite electrolytes containing only one conducting phase is then presented. The opportunities and challenges presented by composite electrolytes containing two conducting phases are addressed. Finally, the importance and status of reaction kinetics at the interfaces between solid electrolytes and electrodes are covered, using a lithium-metal electrode as an example.
more »
« less
This content will become publicly available on March 1, 2026
Lithium battery electrolyte under nanoconfinement
The physical and chemical properties of electrolytes have significant impacts on battery performance. The concept of nanoconfinement has been proposed as an innovative modification strategy to address challenges related to the thermal stability, ion transport efficiency, and electrochemical stability of electrolytes. This involves confining electrolytes within nanoscale or sub-nanoscale spaces, leading to improvements in their physicochemical properties, such as increased boiling points, optimized ion migration, regulated ion concentration gradients, effective ion sieving, accelerated charge transfer, and suppressed side reactions. In this perspective article, we highlight the substantial potential of these approaches for extending the cycle life, broadening operational conditions, and enhancing the safety of lithium-based batteries. Additionally, the challenges and future research directions in this area are discussed.
more »
« less
- Award ID(s):
- 2011924
- PAR ID:
- 10589225
- Publisher / Repository:
- Cell Press
- Date Published:
- Journal Name:
- Cell Reports Physical Science
- Volume:
- 6
- Issue:
- 3
- ISSN:
- 2666-3864
- Page Range / eLocation ID:
- 102496
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ever-increasing global energy demand necessitates the development of efficient, sustainable, and high-performance energy storage systems. Nanotechnology, through the manipulation of materials at the nanoscale, offers significant potential for enhancing the performance of energy storage devices due to unique properties such as increased surface area and improved conductivity. This review paper investigates the crucial role of nanotechnology in advancing energy storage technologies, with a specific focus on capacitors and batteries, including lithium-ion, sodium–sulfur, and redox flow. We explore the diverse applications of nanomaterials in batteries, encompassing electrode materials (e.g., carbon nanotubes, metal oxides), electrolytes, and separators. To address challenges like interfacial side reactions, advanced nanostructured materials are being developed. We also delve into various manufacturing methods for nanomaterials, including top–down (e.g., ball milling), bottom–up (e.g., chemical vapor deposition), and hybrid approaches, highlighting their scalability considerations. While challenges such as cost-effectiveness and environmental concerns persist, the outlook for nanotechnology in energy storage remains promising, with emerging trends including solid-state batteries and the integration of nanomaterials with artificial intelligence for optimized energy storage.more » « less
-
High-entropy materials (HEMs) constitute a revolutionary class of materials that have garnered significant attention in the field of materials science, exhibiting extraordinary properties in the realm of energy storage. These equimolar multielemental compounds have demonstrated increased charge capacities, enhanced ionic conductivities, and a prolonged cycle life, attributed to their structural stability. In the anode, transitioning from the traditional graphite (372 mAh g−1) to an HEM anode can increase capacity and enhance cycling stability. For cathodes, lithium iron phosphate (LFP) and nickel manganese cobalt (NMC) can be replaced with new cathodes made from HEMs, leading to greater energy storage. HEMs play a significant role in electrolytes, where they can be utilized as solid electrolytes, such as in ceramics and polymers, or as new high-entropy liquid electrolytes, resulting in longer cycling life, higher ionic conductivities, and stability over wide temperature ranges. The incorporation of HEMs in metal–air batteries offers methods to mitigate the formation of unwanted byproducts, such as Zn(OH)4 and Li2CO3, when used with atmospheric air, resulting in improved cycling life and electrochemical stability. This review examines the basic characteristics of HEMs, with a focus on the various applications of HEMs for use as different components in lithium-ion batteries. The electrochemical performance of these materials is examined, highlighting improvements such as specific capacity, stability, and a longer cycle life. The utilization of HEMs in new anodes, cathodes, separators, and electrolytes offers a promising path towards future energy storage solutions with higher energy densities, improved safety, and a longer cycling life.more » « less
-
Abstract The development of all‐solid‐state Li‐ion batteries requires solid electrolyte materials with many desired properties, such as ionic conductivity, chemical and electrochemical stability, and mechanical durability. Computation‐guided materials design techniques are advantageous in designing and identifying new solid electrolytes that can simultaneously meet these requirements. In this joint computational and experimental study, a new family of fast lithium ion conductors, namely, LiTaSiO5with sphene structure, are successfully identified, synthesized, and demonstrated using a novel computational design strategy. First‐principles computation predicts that Zr‐doped LiTaSiO5sphene materials have fast Li diffusion, good phase stability, and poor electronic conductivity, which are ideal for solid electrolytes. Experiments confirm that Zr‐doped LiTaSiO5sphene structure indeed exhibits encouraging ionic conductivity. The lithium diffusion mechanisms in this material are also investigated, indicating the sphene materials are 3D conductors with facile 1D diffusion along the [101] direction and additional cross‐channel migration. This study demonstrates a novel design strategy of activating fast Li ionic diffusion in lithium sphenes, a new materials family of superionic conductors.more » « less
-
Carbonate-based electrolytes are widely used in Li-ion batteries but are limited by a small operating temperature window and poor cycling with silicon-containing graphitic anodes. The lack of non-carbonate electrolyte alternatives such as ether-based electrolytes is due to undesired solvent co-intercalation that occurs with graphitic anodes. Here, we show that fluoroethers are the first class of ether solvents to intrinsically support reversible lithium-ion intercalation into graphite without solvent co-intercalation at conventional salt concentrations. In full cells using a graphite anode, they enable 10-fold higher energy densities compared to conventional ethers, and better thermal stability over carbonate electrolytes (operation up to 60 °C) by producing a robust solvent-derived solid electrolyte interphase (SEI). As single-solvent–single-salt electrolytes, they remarkably outperform carbonate electrolytes with fluoroethylene carbonate (FEC) and vinylene carbonate (VC) additives when cycled with graphite–silicon composite anodes. Our molecular design strategy opens a new class of electrolytes that can enable next generation Li-ion batteries with higher energy density and a wider working temperature window.more » « less
An official website of the United States government
