skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 25, 2026

Title: Aligning Language Models with Demonstrated Feedback
Language models are aligned to emulate the collective voice of many, resulting in outputs that align with no one in particular. Steering LLMs away from generic output is possible through supervised finetuning or RLHF, but requires prohibitively large datasets for new ad-hoc tasks. We argue that it is instead possible to align an LLM to a specific setting by leveraging a very small number (< 10) of demonstrations as feedback. Our method, Demonstration ITerated Task Optimization (DITTO), directly aligns language model outputs to a user's demonstrated behaviors. Derived using ideas from online imitation learning, DITTO cheaply generates online comparison data by treating users' demonstrations as preferred over output from the LLM and its intermediate checkpoints. Concretely, DITTO operates by having an LLM generate examples that are presumed to be inferior to expert demonstrations. The method iteratively constructs pairwise preference relationships between these LLM-generated samples and expert demonstrations, potentially including comparisons between different training checkpoints. These constructed preference pairs are then used to train the model using a preference optimization algorithm (e.g. DPO). We evaluate DITTO's ability to learn fine-grained style and task alignment across domains such as news articles, emails, and blog posts. Additionally, we conduct a user study soliciting a range of demonstrations from participants (N = 16). Across our benchmarks and user study, we find that win-rates for DITTO outperform few-shot prompting, supervised fine-tuning, and other self-play methods by an avg. of 19% points. By using demonstrations as feedback directly, DITTO offers a novel method for effective customization of LLMs.  more » « less
Award ID(s):
2247357
PAR ID:
10589270
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
International Conference on Learning Representations (ICLR 2025)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Feedback is essential for learning a new skill or improving one’s current skill-level. However, current methods for skill-assessment from video only provide scores or compare demonstrations, leaving the burden of knowing what to do differently on the user. We introduce a novel method to generate actionable feedback (AF) from video of a person doing a physical activity, such as basketball or soccer. Our method takes a video demonstration and its accompanying 3D body pose and generates (1) free-form expert commentary describing what the person is doing well and what they could improve, and (2) a visual expert demonstration that incorporates the required corrections. We show how to leverage Ego-Exo4D’s [29] videos of skilled activity and expert commentary together with a strong language model to create a weakly-supervised training dataset for this task, and we devise a multimodal video-language model to infer coaching feedback. Our method is able to reason across multi-modal input combinations to output fullspectrum, actionable coaching—expert commentary, expert video retrieval, and expert pose generation—outperforming strong vision-language models on both established metrics and human preference studies. 
    more » « less
  2. Large Language Models (LLMs) have a natural role in answering complex queries about data streams, but the high computational cost of LLM inference makes them infeasible in many such tasks. We propose online cascade learning as an approach to address this challenge. The objective here is to learn a “cascade” of models, starting with lower-capacity models (such as logistic regression) and ending with a powerful LLM, along with a deferral policy that determines the model to be used on a given input. We formulate the task of learning cascades online as an imitation-learning problem, where smaller models are updated over time imitating the LLM expert demonstrations, and give a no-regret algorithm for the problem. Experimental results across four benchmarks show that our method parallels LLMs in accuracy while cutting down inference costs by as much as 90% with strong robustness against input distribution shifts, underscoring its efficacy and adaptability in stream processing. 
    more » « less
  3. We propose coactive learning as a model and feedback mechanism for training large language models (LLMs). The key insight is that users provide implicit feedback whenever they edit the text y proposed by an LLM. While the edited text y¯ is typically not a gold-standard example for supervised training, coactive learning merely requires that the edited text y¯ is an improvement over the proposed text y. Note that such weak implicit preference feedback y¯≻y is available in many application settings on a per-user basis, thus enabling the personalization of LLMs. In this paper, we develop the theoretical basis for coactive training of non-linear models, and we derive CoRLL as the first coactive learning algorithm for LLMs. Empirical results indicate that CoRLL is effective even for weak and noisy coactive preference feedback, making it a promising algorithm for training and personalization of LLMs from feedback that is naturally collected in many use cases. 
    more » « less
  4. Diffusion-based Text-to-Image (T2I) models have achieved impressive success in generating high-quality images from textual prompts. While large language models (LLMs) effectively leverage Direct Preference Optimization (DPO) for fine-tuning on human preference data without the need for reward models, diffusion models have not been extensively explored in this area. Current preference learning methods applied to T2I diffusion models immediately adapt existing techniques from LLMs. However, this direct adaptation introduces an estimated loss specific to T2I diffusion models. This estimation can potentially lead to suboptimal performance through our empirical results. In this work, we propose Direct Score Preference Optimization (DSPO), a novel algorithm that aligns the pretraining and fine-tuning objectives of diffusion models by leveraging score matching, the same objective used during pretraining. It introduces a new perspective on preference learning for diffusion models. Specifically, DSPO distills the score function of human-preferred image distributions into pretrained diffusion models, fine-tuning the model to generate outputs that align with human preferences. We theoretically show that DSPO shares the same optimization direction as reinforcement learning algorithms in diffusion models under certain conditions. Our experimental results demonstrate that DSPO outperforms preference learning baselines for T2I diffusion models in human preference evaluation tasks and enhances both visual appeal and prompt alignment of generated images. 
    more » « less
  5. Machine Translation (MT) remains one of the last NLP tasks where large language models (LLMs) have not yet replaced dedicated supervised systems. This work exploits the complementary strengths of LLMs and supervised MT by guiding LLMs to automatically post-edit MT with external feedback on its quality, derived from Multidimensional Quality Metric (MQM) annotations. Working with LLaMA-2 models, we consider prompting strategies varying the nature of feedback provided and then fine-tune the LLM to improve its ability to exploit the provided guidance. Through experiments on Chinese-English, English-German, and English-Russian MQM data, we demonstrate that prompting LLMs to post-edit MT improves TER, BLEU and COMET scores, although the benefits of fine-grained feedback are not clear. Fine-tuning helps integrate fine-grained feedback more effectively and further improves translation quality based on both automatic and human evaluation. 
    more » « less