Spatial transcriptomic technologies and spatially annotated single-cell RNA sequencing datasets provide unprecedented opportunities to dissect cell–cell communication (CCC). However, incorporation of the spatial information and complex biochemical processes required in the reconstruction of CCC remains a major challenge. Here, we present COMMOT (COMMunication analysis by Optimal Transport) to infer CCC in spatial transcriptomics, which accounts for the competition between different ligand and receptor species as well as spatial distances between cells. A collective optimal transport method is developed to handle complex molecular interactions and spatial constraints. Furthermore, we introduce downstream analysis tools to infer spatial signaling directionality and genes regulated by signaling using machine learning models. We apply COMMOT to simulation data and eight spatial datasets acquired with five different technologies to show its effectiveness and robustness in identifying spatial CCC in data with varying spatial resolutions and gene coverages. Finally, COMMOT identifies new CCCs during skin morphogenesis in a case study of human epidermal development.
more »
« less
This content will become publicly available on March 13, 2026
Graph-Based 3-Dimensional Spatial Gene Neighborhood Networks of Single Cells in Gels and Tissues
Objective: We developed 3-dimensional spatially resolved gene neighborhood network embedding (3D-spaGNN-E) to find subcellular gene proximity relationships and identify key subcellular motifs in cell–cell communication (CCC). Impact Statement: The pipeline combines 3D imaging-based spatial transcriptomics and graph-based deep learning to identify subcellular motifs. Introduction: Advancements in imaging and experimental technology allow the study of 3D spatially resolved transcriptomics and capture better spatial context than approximating the samples as 2D. However, the third spatial dimension increases the data complexity and requires new analyses. Methods: 3D-spaGNN-E detects single transcripts in 3D cell culture samples and identifies subcellular gene proximity relationships. Then, a graph autoencoder projects the gene proximity relationships into a latent space. We then applied explainability analysis to identify subcellular CCC motifs. Results: We first applied the pipeline to mesenchymal stem cells (MSCs) cultured in hydrogel. After clustering the cells based on the RNA count, we identified cells belonging to the same cluster as homotypic and those belonging to different clusters as heterotypic. We identified changes in local gene proximity near the border between homotypic and heterotypic cells. When applying the pipeline to the MSC–peripheral blood mononuclear cell (PBMC) coculture system, we identified CD4+ and CD8+ T cells. Local gene proximity and autoencoder embedding changes can distinguish strong and weak suppression of different immune cells. Lastly, we compared astrocyte–neuron CCC in mouse hypothalamus and cortex by analyzing 3D multiplexed-error-robust fluorescence insitu hybridization (MERFISH) data and identified regional gene proximity differences. Conclusion: 3D-spaGNN-E distinguished distinct CCCs in cell culture and tissue by examining subcellular motifs
more »
« less
- Award ID(s):
- 2338935
- PAR ID:
- 10589272
- Publisher / Repository:
- Science Partner Journal
- Date Published:
- Journal Name:
- BME Frontiers
- Volume:
- 6
- ISSN:
- 2765-8031
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Immunotherapy has revolutionized cancer treatment with the advent of advanced cell engineering techniques aimed at targeted therapy with reduced systemic toxicity. However, understanding the underlying immune–cancer interactions require development of advanced three-dimensional (3D) models of human tissues. In this study, we fabricated 3D tumor models with increasing complexity to study the cytotoxic responses of CD8 + T cells, genetically engineered to express mucosal-associated invariant T (MAIT) cell receptors, towards MDA-MB-231 breast cancer cells. Homotypic MDA-MB-231 and heterotypic MDA-MB-231/human dermal fibroblast tumor spheroids were primed with precursor MAIT cell ligand 5-amino-6-D-ribitylaminouracil (5-ARU). Engineered T cells effectively eliminated tumors after a 3 d culture period, demonstrating that the engineered T cell receptor recognized major histocompatibility complex class I-related (MR1) protein expressing tumor cells in the presence of 5-ARU. Tumor cell killing efficiency of engineered T cells were also assessed by encapsulating these cells in fibrin, mimicking a tumor extracellular matrix microenvironment. Expression of proinflammatory cytokines such as interferon gamma, interleukin-13, CCL-3 indicated immune cell activation in all tumor models, post immunotherapy. Further, in corroborating the cytotoxic activity, we found that granzymes A and B were also upregulated, in homotypic as well as heterotypic tumors. Finally, a 3D bioprinted tumor model was employed to study the effect of localization of T cells with respect to tumors. T cells bioprinted proximal to the tumor had reduced invasion index and increased cytokine secretion, which indicated a paracrine mode of immune–cancer interaction. Development of 3D tumor-T cell platforms may enable studying the complex immune–cancer interactions and engineering MAIT cells for cell-based cancer immunotherapies.more » « less
-
Recent technological advances have enabled spatially resolved measurements of expression profiles for hundreds to thousands of genes in fixed tissues at single-cell resolution. However, scalable computational analysis methods able to take into consideration the inherent 3D spatial organization of cell types and nonuniform cellular densities within tissues are still lacking. To address this, we developed MERINGUE, a computational framework based on spatial autocorrelation and cross-correlation analysis to identify genes with spatially heterogeneous expression patterns, infer putative cell–cell communication, and perform spatially informed cell clustering in 2D and 3D in a density-agnostic manner using spatially resolved transcriptomic data. We applied MERINGUE to a variety of spatially resolved transcriptomic data sets including multiplexed error-robust fluorescence in situ hybridization (MERFISH), spatial transcriptomics, Slide-seq, and aligned in situ hybridization (ISH) data. We anticipate that such statistical analysis of spatially resolved transcriptomic data will facilitate our understanding of the interplay between cell state and spatial organization in tissue development and disease.more » « less
-
Abstract Cell-cell communication (CCC) occurs across different biological scales, ranging from interactions between large groups of cells to interactions between individual cells, forming a hierarchical structure. Globally, CCC may exist between clusters or only subgroups of a cluster with varying size, while locally, a group of cells as sender or receiver may exhibit distinct signaling properties. Current existing methods infer CCC from single-cell RNA-seq or Spatial Transcriptomics only between predefined cell groups, neglecting the existing hierarchical structure within CCC that are determined by signaling molecules, in particular, ligands and receptors. Here, we develop CrossChat, a novel computational framework designed to infer and analyze the hierarchical cell-cell communication structures using two complementary approaches: a global hierarchical structure using a multi-resolution clustering method, and multiple local hierarchical structures using a tree detection method. This framework provides a comprehensive approach to understand the hierarchical relationships within CCC that govern complex tissue functions. By applying our method to two nonspatial scRNA-seq datasets sampled from COVID-19 patients and mouse embryonic skin, and two spatial transcriptomics datasets generated from Stereo-seq of mouse embryo and 10x Visium of mouse wounded skin, we showcase CrossChat’s functionalities for analyzing both global and local hierarchical structures within cell-cell communication.more » « less
-
Li Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome caused by germline mutations in TP53. TP53 is the most common mutated gene in human cancer, occurring in 30–50% of glioblastomas (GBM). Here, we highlight a precision medicine platform to identify potential targets for a GBM patient with LFS. We used a comparative transcriptomics approach to identify genes that are uniquely overexpressed in the LFS GBM patient relative to a cancer compendium of 12,747 tumor RNA sequencing data sets, including 200 GBMs. STAT1 and STAT2 were identified as being significantly overexpressed in the LFS patient, indicating ruxolitinib, a Janus kinase 1 and 2 inhibitors, as a potential therapy. The LFS patient had the highest level of STAT1 and STAT2 expression in an institutional high-grade glioma cohort of 45 patients, further supporting the cancer compendium results. To empirically validate the comparative transcriptomics pipeline, we used a combination of adherent and organoid cell culture techniques, including ex vivo patient-derived organoids (PDOs) from four patient-derived cell lines, including the LFS patient. STAT1 and STAT2 expression levels in the four patient-derived cells correlated with levels identified in the respective parent tumors. In both adherent and organoid cultures, cells from the LFS patient were among the most sensitive to ruxolitinib compared to patient-derived cells with lower STAT1 and STAT2 expression levels. A spheroid-based drug screening assay (3D-PREDICT) was performed and used to identify further therapeutic targets. Two targeted therapies were selected for the patient of interest and resulted in radiographic disease stability. This manuscript supports the use of comparative transcriptomics to identify personalized therapeutic targets in a functional precision medicine platform for malignant brain tumors.more » « less
An official website of the United States government
