skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tailoring Metallosupramolecular Glycoassemblies for Enhancing Lectin Recognition
Abstract Multivalency is a fundamental principle in nature that leads to high‐affinity intermolecular recognition through multiple cooperative interactions that overcome the weak binding of individual constituents. For example, multivalency plays a critical role in lectin‐carbohydrate interactions that participate in many essential biological processes. Designing high‐affinity multivalent glycoconjugates that engage lectins results in systems with the potential to disrupt these biological processes, offering promising applications in therapeutic design and bioengineering. Here, a versatile and tunable synthetic platform for the synthesis of metallosupramolecular glycoassemblies is presented that leverages subcomponent self‐assembly, which employs metal ion templates to generate complex supramolecular architectures from simple precursors in one pot. Through ligand design, this approach provides precise control over molecular parameters such as size, shape, flexibility, valency, and charge, which afforded a diverse family of well‐defined hybrid glyconanoassemblies. Evaluation of these complexes as multivalent binders to Concanavalin A (Con A) by isothermal titration calorimetry (ITC) demonstrates the optimal saccharide tether length and the effect of electrostatics on protein affinity, revealing insights into the impact of synthetic design on molecular recognition. The presented studies offer an enhanced understanding of structure‐function relationships governing lectin‐saccharide interactions at the molecular level and guide a systematic approach towards optimizing glyconanoassembly binding parameters.  more » « less
Award ID(s):
2011924
PAR ID:
10589407
Author(s) / Creator(s):
Publisher / Repository:
Wiley-VCH
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
63
Issue:
40
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Lectins are important biological tools for binding glycans, but recombinant protein expression poses challenges for some lectin classes, limiting the pace of discovery and characterization. To discover and engineer lectins with new functions, workflows amenable to rapid expression and subsequent characterization are needed. Here, we present bacterial cell-free expression as a means for efficient, small-scale expression of multivalent, disulfide bond-rich, rhamnose-binding lectins. Furthermore, we demonstrate that the cell-free expressed lectins can be directly coupled with bio-layer interferometry analysis, either in solution or immobilized on the sensor, to measure interaction with carbohydrate ligands without purification. This workflow enables the determination of lectin substrate specificity and estimation of binding affinity. Overall, we believe that this method will enable high-throughput expression, screening, and characterization of new and engineered multivalent lectins for applications in synthetic glycobiology. 
    more » « less
  2. The complex distribution of functional groups in carbohydrates, coupled with their strong solvation in water, makes them challenging targets for synthetic receptors. Despite extensive research into various molecular frameworks, most synthetic carbohydrate receptors have exhibited low affinities, and their interactions with sugars in aqueous environments remain poorly understood. In this work, we present a simple pyridinium-based hydrogen-bonding receptor derived from a subtle structural modification of a well-known tetralactam macrocycle. This small structural change resulted in a dramatic enhancement of glucose binding affinity, increasing from 56 M−1 to 3001 M−1. Remarkably, the performance of our synthetic lectin surpasses that of the natural lectin, concanavalin A, by over fivefold. X-ray crystallography of the macrocycle–glucose complex reveals a distinctive hydrogen bonding pattern, which allows for a larger surface overlap between the receptor and glucose, contributing to the enhanced affinity. Furthermore, this receptor possesses allosteric binding sites, which involve chloride binding and trigger receptor aggregation. This unique allosteric process reveals the critical role of structural flexibility in this hydrogen-bonding receptor for the effective recognition of sugars. We also demonstrate the potential of this synthetic lectin as a highly sensitive glucose sensor in aqueous solutions. 
    more » « less
  3. In supramolecular materials, multiple weak binding groups can act as a single collective unit when confined to a localized volume, thereby producing strong but dynamic bonds between material building blocks. This principle of multivalency provides a versatile means of controlling material assembly, as both the number and the type of supramolecular moieties become design handles to modulate the strength of intermolecular interactions. However, in materials with building blocks significantly larger than individual supramolecular moieties (e.g., polymer or nanoparticle scaffolds), the degree of multivalency is difficult to predict or control, as sufficiently large scaffolds inherently preclude separated supramolecular moieties from interacting. Because molecular models commonly used to examine supramolecular interactions are intrinsically unable to examine any trends or emergent behaviors that arise due to nanoscale scaffold geometry, our understanding of the thermodynamics of these massively multivalent systems remains limited. Here we address this challenge via the coassembly of polymer-grafted nanoparticles and multivalent polymers, systematically examining how multivalent scaffold size, shape, and spacing affect their collective thermodynamics. Investigating the interplay of polymer structure and supramolecular group stoichiometry reveals complicated but rationally describable trends that demonstrate how the supramolecular scaffold design can modulate the strength of multivalent interactions. This approach to self-assembled supramolecular materials thus allows for the manipulation of polymer−nanoparticle composites with controlled thermal stability, nanoparticle organization, and tailored meso- to microscopic structures. The sophisticated control of multivalent thermodynamics through precise modulation of the nanoscale scaffold geometry represents a significant advance in the ability to rationally design complex hierarchically structured materials via self-assembly. 
    more » « less
  4. null (Ed.)
    Targeted drug delivery relies on two physical processes: the selective binding of a therapeutic particle to receptors on a specific cell membrane, followed by transport of the particle across the membrane. In this article, we address some of the challenges in controlling the thermodynamics and dynamics of these two processes by combining a simple experimental system with a statistical mechanical model. Specifically, we characterize and model multivalent ligand–receptor binding between colloidal particles and fluid lipid bilayers, as well as the surface mobility of membrane-bound particles. We show that the mobility of the receptors within the fluid membrane is key to both the thermodynamics and dynamics of binding. First, we find that the particle-membrane binding free energy—or avidity—is a strongly nonlinear function of the ligand–receptor affinity. We attribute the nonlinearity to a combination of multivalency and recruitment of fluid receptors to the binding site. Our results also suggest that partial wrapping of the bound particles by the membrane enhances avidity further. Second, we demonstrate that the lateral mobility of membrane-bound particles is also strongly influenced by the recruitment of receptors. Specifically, we find that the lateral diffusion coefficient of a membrane-bound particle is dominated by the hydrodynamic drag against the aggregate of receptors within the membrane. These results provide one of the first direct validations of the working theoretical framework for multivalent interactions. They also highlight that the fluidity and elasticity of the membrane are as important as the ligand–receptor affinity in determining the binding and transport of small particles attached to membranes. 
    more » « less
  5. Abstract The effect of the two‐dimensional glycan display on glycan‐lectin recognition remains poorly understood despite the importance of these interactions in a plethora of cellular processes, in (patho)physiology, as well as its potential for advanced therapeutics. Faced with this challenge we utilized glycodendrimersomes, a type of synthetic vesicles whose membrane mimics the surface of a cell and offers a means to probe the carbohydrate biological activity. These single‐component vesicles were formed by the self‐assembly of sequence‐defined mannose‐Janus dendrimers, which serve as surrogates for glycolipids. Using atomic force microscopy and molecular modeling we demonstrated that even mannose, a monosaccharide, was capable of organizing the sugar moieties into periodic nanoarrays without the need of the formation of liquid‐ordered phases as assumed necessary for rafts. Kinetics studies of Concanavalin A binding revealed that those nanoarrays resulted in a new effective ligand yielding a ten‐fold increase in the kinetic and thermodynamic constant of association. 
    more » « less