skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Single‐Particle Tracking Microelectrophoresis Analysis of Charge and Cargo Loading on Gene Delivery Microbubbles
Abstract Lipid‐coated microbubbles are an important class of gene delivery vehicles activated by ultrasound to locally deliver their DNA payloads to cells. Negatively charged DNA is electrostatically loaded onto the positively charged surface of microbubbles that contain a cationic lipid shell. Characterizing the zeta potential of individual cationic microbubbles to determine a population distribution and how this is affected by DNA complexation is critical to maximize DNA loading and circulation time. Traditional zeta potential analysis provides an ensemble charge measurement for a particle population but cannot measure individual particles to determine a distribution. Here, single‐particle tracking microelectrophoresis technology is applied to measure zeta potentials of individual microbubbles synthesized with different ratios of 1,2‐distearoyl‐3‐trimethylammonium‐propane (DSTAP) cationic lipid as well as loaded with increasing amounts of DNA. Results show that at 0 mol% DSTAP all microbubbles are negatively charged, and at 10 mol% half are positive. All particles are positive at 20 mol% DSTAP but the population shifts to negative values upon incubation with 0.01 pg DNA/microbubble. Analyzing zeta potential on the individual microbubble level is a powerful tool to understand DNA loading across a population of microbubbles and enables microbubble surface charge and nucleic acid loading optimization for delivery applications.  more » « less
Award ID(s):
2339254
PAR ID:
10589447
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley-VCH GmbH
Date Published:
Journal Name:
Particle & Particle Systems Characterization
Volume:
42
Issue:
4
ISSN:
0934-0866
Page Range / eLocation ID:
2400187
Subject(s) / Keyword(s):
cationic lipids electrostatic loading gene delivery microbubbles zeta potential
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract IntroductionCoaxial 3D bioprinting has advanced the formation of tissue constructs that recapitulate key architectures and biophysical parameters for in-vitro disease modeling and tissue-engineered therapies. Controlling gene expression within these structures is critical for modulating cell signaling and probing cell behavior. However, current transfection strategies are limited in spatiotemporal control because dense 3D scaffolds hinder diffusion of traditional vectors. To address this, we developed a coaxial extrusion 3D bioprinting technique using ultrasound-responsive gene delivery bioinks. These bioink materials incorporate echogenic microbubble gene delivery particles that upon ultrasound exposure can sonoporate cells within the construct, facilitating controllable transfection. MethodsPhospholipid-coated gas-core microbubbles were electrostatically coupled to reporter transgene plasmid payloads and incorporated into cell-laden alginate bioinks at varying particle concentrations. These bioinks were loaded into the coaxial nozzle core for extrusion bioprinting with CaCl2crosslinker in the outer sheath. Resulting bioprints were exposed to 2.25 MHz focused ultrasound and evaluated for microbubble activation and subsequent DNA delivery and transgene expression. ResultsCoaxial printing parameters were established that preserved the stability of ultrasound-responsive gene delivery particles for at least 48 h in bioprinted alginate filaments while maintaining high cell viability. Successful sonoporation of embedded cells resulted in DNA delivery and robust ultrasound-controlled transgene expression. The number of transfected cells was modulated by varying the number of focused ultrasound pulses applied. The size region over which DNA was delivered was modulated by varying the concentration of microbubbles in the printed filaments. ConclusionsOur results present a successful coaxial 3D bioprinting technique designed to facilitate ultrasound-controlled gene delivery. This platform enables remote, spatiotemporally-defined genetic manipulation in coaxially bioprinted tissue constructs with important applications for disease modeling and regenerative medicine. 
    more » « less
  2. Adding a cationic helper lipid to a lipid nanoparticle (LNP) can increase lung delivery and decrease liver delivery. However, it remains unclear whether charge-dependent tropism is universal or, alternatively, whether it depends on the component that is charged. Here, we report evidence that cationic cholesterol-dependent tropism can differ from cationic helper lipid-dependent tropism. By testing how 196 LNPs delivered mRNA to 22 cell types, we found that charged cholesterols led to a different lung:liver delivery ratio than charged helper lipids. We also found that combining cationic cholesterol with a cationic helper lipid led to mRNA delivery in the heart as well as several lung cell types, including stem cell-like populations. These data highlight the utility of exploring charge-dependent LNP tropism. 
    more » « less
  3. Abstract Gene therapy has the potential to facilitate targeted expression of therapeutic proteins to promote cartilage regeneration in osteoarthritis (OA). The dense, avascular, aggrecan‐glycosaminoglycan (GAG) rich negatively charged cartilage, however, hinders their transport to reach chondrocytes in effective doses. While viral vector mediated gene delivery has shown promise, concerns over immunogenicity and tumorigenic side‐effects persist. To address these issues, this study develops surface‐modified cartilage‐targeting exosomes as non‐viral carriers for gene therapy. Charge‐reversed cationic exosomes are engineered for mRNA delivery by anchoring cartilage targeting optimally charged arginine‐rich cationic motifs into the anionic exosome bilayer by using buffer pH as a charge‐reversal switch. Cationic exosomes penetrated through the full‐thickness of early‐stage arthritic human cartilage owing to weak‐reversible ionic binding with GAGs and efficiently delivered the encapsulated eGFP mRNA to chondrocytes residing in tissue deep layers, while unmodified anionic exosomes do not. When intra‐articularly injected into destabilized medial meniscus mice knees with early‐stage OA, mRNA loaded charge‐reversed exosomes overcame joint clearance and rapidly penetrated into cartilage, creating an intra‐tissue depot and efficiently expressing eGFP; native exosomes remained unsuccessful. Cationic exosomes thus hold strong translational potential as a platform technology for cartilage‐targeted non‐viral delivery of any relevant mRNA targets for OA treatment. 
    more » « less
  4. We use diamond nanoparticles (DNPs) wrapped in the cationic polyelectrolyte poly(allylamine) hydrochloride (PAH) and bilayers composed of either pure DOPC or a mixture of DOPC/DOPG to investigate the influence of membrane phospholipid composition and net surface charge on nanoparticle-membrane interactions and the extent of nanoparticle adhesion to supported phospholipid bilayers. Our results show that in all cases electrostatic attractions between the negatively charged bilayer and cationic PAH-DNP were responsible for the initial attachment of particles, and the lateral electrostatic repulsion between adsorbed particles on the bilayer surface determined the final extent of PAH-DNP attachment. Upon attachment, NPs attract lipids by the contact ion pairing between the ammonium groups on PAH and phosphate and glycerol groups on the lipids and acquire a lipid corona. Lipid corona formation on the PAH-DNP reduces the effective charge density of the particle and is in fact a key factor determining the final extent of NP attachment to the bilayer. Incorporation of DOPG to the bilayer leads to a decrease in efficiency and final extent of attachment compared to DOPC alone. The reduction in PAH-DNP attachment in the presence of DOPG is attributed to the adsorption of free PAH in equilibrium with bound PAH in the nanoparticle solution, thus reducing electrostatic attraction between PAH-DNPs and SLBs. This leads to an increase in hydrogen bonding interactions between lipid headgroups that limits extraction of phospholipids from the bilayer by PAH-DNP, lessening the reduction in interparticle repulsion achieved by acquisition of a lipid corona. Our results indicate that the inclusion of charged phospholipids in SLBs changes bilayer rigidity and stability and hinders the attachment of PAH-DNPs by preventing lipid extraction from the bilayer. 
    more » « less
  5. Presented herein is the first report on dipolar Janus liposomes–liposomes that contain opposite surface charges decorating the two hemispheres of the same colloidal body. Such heterogeneous organization of surface charge is achieved through cholesterol-modulated lipid phase separation, which sorts anionic/cationic lipids into coexisting liquid-ordered/liquid-disordered domains. We present optimized experimental conditions to produce these liposomes in high yields, based on the gel-assisted hydration of ternary lipid systems consisting of cholesterol, 1,2-dipalmitoyl- sn-glycero -3-phosphocholine, and 1,2-dioleoyl- sn-glycero -3-phosphocholine. The size/charge distribution and domain configuration of these liposomes are characterized in detail by confocal fluorescence microscopy, nanosphere binding and zeta potential measurements. Using confocal fluorescence microscopy, we also follow the electrokinetic motion as well as the electrostatic self-assembly of these new dipolar Janus particles. 
    more » « less