skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 1, 2026

Title: Exploring the effects of excipients on complex coacervation
Complex coacervation is an associative liquid–liquid phase separation phenomenon that takes place due to the electrostatic complexation of oppositely-charged polyelectrolytes and the entropic gains associated with the release of bound counterions and rearrangement of solvent. The aqueous nature of coacervation has resulted in its broad use in systems requiring high biocompatibility. The significance of electrostatic interactions in coacervates has meant that studies investigating the phase behaviors of these systems have tended to focus on parameters such as the charge stoichiometry of the polyions, the solution pH, and the ionic strength. However, the equilibrium that exists between the polymer-rich coacervate phase and the polymer-poor supernatant phase represents a balance among attractive electrostatic interactions and excluded volume repulsions as well as osmotic pressure effects. As such, we hypothesize that it should be possible to tune coacervate phase behavior via the addition of non-electrostatic excipients which would partition between the two phases and potentially alter both the solvent quality and the osmotic pressure balance. In particular, our work focuses on small molecule excipients such as sugars, amino acids, and other additives that have a history of use in vaccine formulation. We quantified the ability of these excipients to partition into the coacervate phase, and their potential for destabilizing the phase separation. Furthermore, we demonstrate that these additives can be combined with complex coacervation in the context of a virus formulation.  more » « less
Award ID(s):
2118788
PAR ID:
10589542
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Journal of Colloid and Interface Science
Date Published:
Journal Name:
Journal of Colloid and Interface Science
Volume:
695
Issue:
C
ISSN:
0021-9797
Page Range / eLocation ID:
137808
Subject(s) / Keyword(s):
Complex coacervation Excipient Encapsulation Virus Solvent quality
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oppositely-charged polymers can undergo an associative phase separation process known as complex coacervation, which is driven by the electrostatic attraction between the two polymer species. This driving force for phase separation can be harnessed to drive self-assembly, via pairs of block copolyelectrolytes with opposite charge and thus favorable coulombic interactions. There are few predictions of coacervate self-assembly phase behavior due to the wide variety of molecular and environmental parameters, along with fundamental theoretical challenges. In this paper, we use recent advances in coacervate theory to predict the solution-phase assembly of diblock polyelectrolyte pairs for a number of molecular design parameters (charged block fraction, polymer length). Phase diagrams show that self-assembly occurs at high polymer, low salt concentrations for a range of charge block fractions. We show that we qualitatively obtain limiting results seen in the experimental literature, including the emergence of a high polymer-fraction reentrant transition that gives rise to a self-compatibilized homopolymer coacervate behavior at the limit of high charge block fraction. In intermediate charge block fractions, we draw an analogy between the role of salt concentration in coacervation-driven assembly and the role of temperature in χ -driven assembly. We also explore salt partitioning between microphase separated domains in block copolyelectrolytes, with parallels to homopolyelectrolyte coacervation. 
    more » « less
  2. Many intrinsically disordered peptides have been shown to undergo liquid–liquid phase separation and form complex coacervates, which play various regulatory roles in the cell. Recent experimental studies found that such phase separation processes may also occur at the lipid membrane surface and help organize biomolecules during signaling events; in some cases, phase separation of proteins at the membrane surface was also observed to lead to significant remodeling of the membrane morphology. The molecular mechanisms that govern the interactions between complex coacervates and lipid membranes and the impacts of such interactions on their structure and morphology, however, remain unclear. Here we study the coacervation of poly-glutamate (E 30 ) and poly-lysine (K 30 ) in the presence of lipid bilayers of different compositions. We carry out explicit-solvent coarse-grained molecular dynamics simulations by using the MARTINI (v3.0) force-field. We find that more than 20% anionic lipids are required for the coacervate to form stable contact with the bilayer. Upon wetting, the coacervate induces negative curvature to the bilayer and facilitates local lipid demixing, without any peptide insertion. The magnitude of negative curvature, extent of lipid demixing, and asphericity of the coacervate increase with the concentration of anionic lipids. Overall, we observe a decrease in the number of contacts among the polyelectrolytes as the droplet spreads over the bilayer. Therefore, unlike previous suggestions, interactions among polyelectrolytes do not constitute a driving force for the membrane bending upon wetting by the coacervate. Rather, analysis of interaction energy components suggests that bending of the membrane is favored by enhanced interactions between polyelectrolytes with lipids as well as with counterions. Kinetic studies reveal that, at the studied polyelectrolyte concentrations, the coacervate formation precedes bilayer wetting. 
    more » « less
  3. Complex coacervation is an associative, liquid–liquid phase separation that can occur in solutions of oppositely-charged macromolecular species, such as proteins, polymers, and colloids. This process results in a coacervate phase, which is a dense mix of the oppositely-charged components, and a supernatant phase, which is primarily devoid of these same species. First observed almost a century ago, coacervates have since found relevance in a wide range of applications; they are used in personal care and food products, cutting edge biotechnology, and as a motif for materials design and self-assembly. There has recently been a renaissance in our understanding of this important class of material phenomena, bringing the science of coacervation to the forefront of polymer and colloid science, biophysics, and industrial materials design. In this review, we describe the emergence of a number of these new research directions, specifically in the context of polymer–polymer complex coacervates, which are inspired by a number of key physical and chemical insights and driven by a diverse range of experimental, theoretical, and computational approaches. 
    more » « less
  4. Oppositely-charged polyelectrolytes can undergo a liquid–liquid phase separation in a salt solution, resulting in a polymer-dense ‘coacervate’ phase that has found use in a wide range of applications from food science to self-assembled materials. Coacervates can be tuned for specific applications by varying parameters such as salt concentration and valency, polyelectrolyte length, and polyelectrolyte identity. Recent simulation and theory has begun to clarify the role of molecular structure on coacervation phase behavior, especially for common synthetic polyelectrolytes that exhibit high charge densities. In this manuscript, we use a combination of transfer matrix theory and Monte Carlo simulation to understand at a physical level how a range of molecular features, in particular polymer architecture and stiffness, and salt valency can be used to design the phase diagrams of these materials. We demonstrate a physical picture of how the underlying entropy-driven process of complex coacervation is affected by this wide range of physical attributes. 
    more » « less
  5. Complex coacervation is a widely utilized technique for effecting phase separation, though predictive understanding of molecular-level details remains underdeveloped. Here, we couple coarse-grained Monte Carlo simulations with experimental efforts using a polypeptide-based model system to investigate how a comb-like architecture affects complex coacervation and coacervate stability. Specifically, the phase separation behavior of linear polycation-linear polyanion pairs was compared to that of comb polycation-linear polyanion and comb polycation-comb polyanion pairs. The comb architecture was found to mitigate cooperative interactions between oppositely charged polymers, as no discernible phase separation was observed for comb-comb pairs and complex coacervation of linear-linear pairs yielded stable coacervates at higher salt concentration than linear-comb pairs. This behavior was attributed to differences in counterion release by linear vs. comb polymers during polyeletrolyte complexation. Additionally, the comb polycation formed coacervates with both stereoregular poly( l -glutamate) and racemic poly( d , l -glutamate), whereas the linear polycation formed coacervates only with the racemic polyanion. In contrast, solid precipitates were obtained from mixtures of stereoregular poly( l -lysine) and poly( l -glutamate). Moreover, the formation of coacervates from cationic comb polymers incorporating up to ∼90% pendant zwitterionic groups demonstrated the potential for inclusion of comonomers to modulate the hydrophilicity and/or other properties of a coacervate-forming polymer. These results provide the first detailed investigation into the role of polymer architecture on complex coacervation using a chemically and architecturally well-defined model system, and highlight the need for additional research on this topic. 
    more » « less