skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Phylogeny does not predict the outcome of heterospecific pollen–pistil interactions in a species‐rich alpine plant community
Abstract PremiseCo‐occurring plant species that share generalist pollinators often exchange pollen. This heterospecific pollen transfer (HPT) impacts male and female reproductive success through pollen loss and reductions in seed set, respectively. The resulting fitness cost of HPT imposes selection on reproductive traits (e.g., floral color and shape), yet we currently lack strong predictors for the post‐pollination fate of heterospecific pollen, especially within community and phylogenetic contexts. MethodsWe investigated the fate of heterospecific pollen at three distinct stages of plant reproduction: (1) pollen germination on the stigma, (2) pollen tube growth in the style, and (3) fertilization of ovules. We experimentally crossed 11 naturally co‐flowering species in the subalpine meadows of the Colorado Rocky Mountains, across a spectrum of phylogenetic relatedness. Using generalized linear mixed models and generalized linear models, we evaluated the effect of parental species identity and phylogenetic relatedness on pollen tube growth at each reproductive stage. ResultsWe found that heterospecific pollen tubes can germinate and grow within pistils at each reproductive stage, even when parental species are >100 My divergent. There was no significant effect of phylogenetic distance on heterospecific pollen success, and no evidence for a mechanism that suspends heterospecific pollen germination or pollen tube growth within heterospecific stigmas or styles. ConclusionsOur results show that even in communities where HPT is common, pre‐zygotic post‐pollination mechanisms do not provide strong barriers to interspecific fertilization. HPT can result in the loss of ovules even between highly diverged plant species.  more » « less
Award ID(s):
2046813
PAR ID:
10589556
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
American Journal of Botany
Volume:
112
Issue:
3
ISSN:
0002-9122
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Characterizing the mechanisms of reproductive isolation between lineages is key to determining how new species are formed and maintained. In flowering plants, interactions between the reproductive organs of the flower—the pollen and the pistil—serve as the last barrier to reproduction before fertilization. As such, these pollen–pistil interactions are both complex and important for determining a suitable mate. Here, we test whether differences in style length (a part of the pistil) generate a postmating prezygotic mechanical barrier between five species of perennial Phlox wildflowers with geographically overlapping distributions. We perform controlled pairwise reciprocal crosses between three species with long styles and two species with short styles to assess crossing success (seed set). We find that the heterospecific seed set is broadly reduced compared to conspecific cross success and reveal a striking asymmetry in heterospecific crosses between species with different style lengths. To determine the mechanism underlying this asymmetric reproductive isolating barrier, we assess pollen tube growth in vivo and in vitro. We demonstrate that pollen tubes of short-styled species do not grow long enough to reach the ovaries of long-styled species. We find that short-styled species also have smaller pollen and that both within- and between-species pollen diameter is highly correlated with pollen tube length. Our results support the hypothesis that the small pollen of short-styled species lacks resources to grow pollen tubes long enough to access the ovaries of the long-styled species, resulting in an asymmetrical, mechanical barrier to reproduction. Such reproductive isolating mechanisms, combined with additional pollen–pistil incompatibilities, may be particularly important for closely related species in geographic proximity that share pollinators. 
    more » « less
  2. Abstract Background Siring success plays a key role in plant evolution and reproductive ecology, and variation among individuals creates an opportunity for selection to act. Differences in male reproductive success can be caused by processes that occur during two stages, the pollination and post-pollination phases of reproduction. In the pollination phase, heritable variation in floral traits and floral display affect pollinator visitation patterns, which in turn affect variation among plants in the amount of pollen exported and deposited on recipient stigmas. In the post-pollination phase, differences among individuals in pollen grain germination success and pollen tube growth may cause realized paternity to differ from patterns of pollen receipt. The maternal plant can also preferentially provision some developing seeds or fruits to further alter variation in siring success. Scope In this review, we describe studies that advance our understanding of the dynamics of the pollination and post-pollination phases, focusing on how variation in male fitness changes in response to pollen limitation. We then explore the interplay between pollination and post-pollination success, and how these processes respond to ecological factors such as pollination intensity. We also identify pressing questions at the intersection of pollination and paternity and describe novel experimental approaches to elucidate the relative importance of pollination and post-pollination factors in determining male reproductive success. Conclusions The relative contribution of pollination and post-pollination processes to variation in male reproductive success may not be constant, but rather may vary with pollination intensity. Studies that quantify the effects of pollination and post-pollination phases in concert will be especially valuable as they will enable researchers to more fully understand the ecological conditions influencing male reproductive success. 
    more » « less
  3. Abstract Background and AimsPollination failure occurs from insufficient pollen quantity or quality. However, the relative contributions of pollen quantity vs. quality to overall pollen limitation, and how this is affected by the co-flowering context, remain unknown for most plant populations. Here, we studied patterns of pollen deposition and pollen tube formation across populations of four predominately outcrossing species in the genus Clarkia to evaluate how the richness of co-flowering congeners affects the contribution of pollen quantity and quality to pollen limitation. MethodsWe partition variation in pollen deposition and pollen tube production across individuals, populations and species to identify the main sources of variation in components of reproductive success. We further quantify the relative contribution of pollen quantity and quality limitation to the reproductive success of the four Clarkia species using piecewise regression analyses. Finally, we evaluate how variation in the number of co-flowering Clarkia species in the community affects the strength of pollen quality and quality limitation. ResultsAcross all contexts, pollen deposition and the proportion of pollen tubes produced varied greatly among individuals, populations and species, and these were not always correlated. For instance, C. xantiana received the smallest pollen loads yet produced the highest proportion of pollen tubes, while C. speciosa exhibited the opposite pattern. Yet, co-flowering richness had variable effects on the strength of pollen quantity and quality limitation among populations. Specifically, breakpoint values, which are an indicator of overall pollen limitation, were two-fold higher in the four-species community compared with one- and two-species communities for two Clarkia species, suggesting that pollen limitation can increase with increasing richness of co-flowering congeners. ConclusionsOur results reveal a complex interplay between the quantity and quality of pollen limitation and co-flowering context that may have different evolutionary outcomes across species and populations. 
    more » « less
  4. Abstract Pollen function is critical for successful plant reproduction and crop productivity and it is important to develop accessible methods to quantitatively analyze pollen performance to enhance reproductive resilience. Here we introduce TubeTracker as a method to quantify key parameters of pollen performance such as, time to pollen grain germination, pollen tube tip velocity and pollen tube survival. TubeTracker integrates manual and automatic image processing routines and the graphical user interface allows the user to interact with the software to make manual corrections of automated steps. TubeTracker does not depend on training data sets required to implement machine learning approaches and thus can be immediately implemented using readily available imaging systems. Furthermore, TubeTracker is an excellent tool to produce the pollen performance data sets necessary to take advantage of emerging AI-based methods to fully automate analysis. We tested TubeTracker and found it to be accurate in measuring pollen tube germination and pollen tube tip elongation across multiple cultivars of tomato. Abstract FigureGraphical AbstractGraphical user interface of TubeTracker showing all supported functionalities. 
    more » « less
  5. PremiseVariation in pollen‐ovule ratios is thought to reflect the degree of pollen transfer efficiency—the more efficient the process, the fewer pollen grains needed. Few studies have directly examined the relationship between pollen‐ovule ratio and pollen transfer efficiency. For active pollination in the pollination brood mutualisms of yuccas and yucca moths, figs and fig wasps, senita and senita moths, and leafflowers and leafflower moths, pollinators purposefully collect pollen and place it directly on the stigmatic surface of conspecific flowers. The tight coupling of insect reproductive interests with pollination of the flowers in which larvae develop ensures that pollination is highly efficient. MethodsWe used the multiple evolutionary transitions between passive pollination and more efficient active pollination to test if increased pollen transfer efficiency leads to reduced pollen‐ovule ratios. We collected pollen and ovule data from a suite of plant species from each of the pollination brood mutualisms and used phylogenetically controlled tests and sister‐group comparisons to examine whether the shift to active pollination resulted in reduced pollen‐ovule ratios. ResultsAcross all transitions between passive and active pollination in plants, actively pollinated plants had significantly lower pollen‐ovule ratios than closely related passively pollinated taxa. Phylogenetically corrected comparisons demonstrated that actively pollinated plant species had an average 76% reduction in the pollen‐ovule ratio. ConclusionsThe results for active pollination systems support the general utility of pollen‐ovule ratios as indicators of pollination efficiency and the central importance of pollen transfer efficiency in the evolution of pollen‐ovule ratio. 
    more » « less