Rates of poverty and economic inequality in rural Alabama are among the nation's highest and increasing agricultural productivity can provide a needed boost to these communities. The transition from rain-fed to irrigation-fed (RFtoIF) agriculture has significantly increased farm productivity and profitability elsewhere in the United States. Despite this potential to enhance stability and resilience in rural economies, irrigated cropland accounts for only 5% of Alabama's total cropland as numerous barriers remain to irrigation adoption. To encourage RFtoIF transition, it is imperative to identify the challenges faced by individual farmers at farm, community, and state levels. This study presents a multi-level mixed effects survival analysis to identify the physiographic, socioecological, and economic factors that influence the location and timing of irrigation adoption. We integrate spatiotemporal cropland and climatological data with field-verified locations of center-pivot irrigation systems, local physiographic characteristics, and parcel-level surface water access and average well depth. Access to surface water, costs to access groundwater, and soil characteristics were generally important influences in all regions, but regions were differentiated by the extent to which new irrigation was more responsive to social influences vs. precipitation and price trends. Our findings also highlighted the diversity of farming conditions across the state, which suggested that diverse policy tools are needed that acknowledge the varying motivations and constraints faced by Alabama's farmers.
more »
« less
This content will become publicly available on March 1, 2026
Does the Future Look Irrigated? Evaluating the Likelihood of Irrigation Adoption Within Alabama
abstract: Farmers have time and again adopted new methods or technologies. However, recent increases in global temperatures and occurrences of extreme weather events, call for an urgency to address and reduce the risks associated with climate change. Irrigation is a key adaptation that reduces crop heat stress and enhances agricultural production. Alabama is considered water-rich but lately has experienced increased rainfall variability and temperature extremes. Various state-wide initiatives to increase irrigation have been implemented, but adoption remains limited. Existing studies have explored factors influencing irrigation uptake, but none have engaged in a state-level assessment of its adoption potential. In this study, we provide spatially explicit estimates of the potential to implement irrigation practices across the state. Moreover, we derive an irrigation adoption index map for Alabama to identify areas where implementation is more or less likely based on a multi-criteria analysis. The results highlight a large potential for expansion in areas that have high shares of existing irrigation. Such an analysis can enable targeted mobilization of resources towards areas where uptake is currently low but feasible through increased adaptation efforts. Additionally, these estimates can be further used to evaluate future water demands or conduct other regional analyses.
more »
« less
- Award ID(s):
- 2317819
- PAR ID:
- 10589569
- Publisher / Repository:
- Project Muse
- Date Published:
- Journal Name:
- Southeastern Geographer
- Volume:
- 65
- Issue:
- 1
- ISSN:
- 1549-6929
- Page Range / eLocation ID:
- 74 to 100
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The coverage of center pivot irrigation systems used around the world has increased. One potential factor driving their adoption is improved water application efficiency relative to some other sprinkler or surface irrigation approaches. Center pivot irrigation systems may be further improved by dynamic elevation spray application (DESA). DESA systems adjust the nozzle height in response to plant growth and canopy heterogeneities. The DESA approach is relatively new and there is uncertainty in its economic viability and worthiness of further investigation. Thus, an economic scenario analysis was performed to explore the potential economic benefits of DESA based on permutations of irrigation pivot efficiency without DESA, water-saving potential of DESA, and water cost. The weighted costs and benefits of the height-adjusted approach for a set of water cost savings scenarios showed the net return price with the water cost savings per season. We show that DESA could have economic viability at current component costs and is worthy of further investigation and refinement.more » « less
-
Abstract Irrigation can increase crop yields and could be a key climate adaptation strategy. However, future water availability is uncertain. Here we explore the economic costs and benefits of existing and expanded irrigation of maize and soybean throughout the United States. We examine both middle and end of the 21st-century conditions under future climates that span the range of projections. By mid-century we find an expansion in the area where the benefits of irrigation outweigh groundwater pumping and equipment ownership costs. Increased crop water demands limit the region where maize could be sustainably irrigated, but sustainably irrigated soybean is likely feasible throughout regions of the midwestern and southeastern United States. Shifting incentives for installing and maintaining irrigation equipment could place additional challenges on resource availability. It will be important for decision makers to understand and account for local water demand and availability when developing policies guiding irrigation installation and use.more » « less
-
For decades, nations around the world have been promoting irrigation expansion as a method for improving agricultural growth, smoothing production risk, and alleviating rural poverty. Despite its apparent advantages, suboptimal adoption rates persist. According to the existing literature, determinants of irrigation adoption are often highly dependent on cultural, contextual, and/or local institutional factors. Yet, studies from diverse geographies identify a consistent set of factors. Thus, to be able to make generalizable inferences from such studies, a global geographic representativeness assessment of irrigation adoption studies was conducted to determine whether identified factors influencing irrigation were the result of geographic, epistemological, or disciplinary biases. The results indicate that multiple geographic biases exist with respect to studying farmers’ irrigation adoption decision-making. More research on this topic is being conducted in regions that have little to a high percentage of irrigation (>1%), are readily accessible, receive moderate amounts of average annual rainfall, and have moderate amounts of cropland cover. The results suggest the need to expand research efforts in areas with little to no irrigation to identify constraints and help accelerate economic growth, poverty reduction, and food and livelihood security for rural communities in these regions.more » « less
-
Agricultural runoff ranks second only to atmospheric deposition as a source of nitrogen pollution to streams in the southeastern United States. Climate-smart practices such as irrigation have the potential to reduce these impacts and provide resilience in the face of climate change. The purpose of this study is to evaluate the impact of irrigation amounts and fertilizer application strategies on surface nitrate export to surrounding steams. Data from an existing experiment on corn nitrogen fertilization in the Southeastern US was utilized and a crop simulation model was employed to simulate the water and nitrogen dynamics within the soil with particular emphases on nutrient uptake and residual nutrients. left in the soil after harvest under varying fertilization scenarios. A hydrologic and nutrient export model was developed to run in conjunction with the crop model to simulate lateral export from the fields. The results of this study indicate that climate and nutrient management are the dominant factors in determining surface nutrient transport under both rain fed and irrigated conditions, confirming previous studies. The overall results show that irrigation, on average, reduced nutrient export from the surface, especially in dry years. The effect is even greater if the nutrients are applied later in the year while irrigation is on-going. While this present study provides an initial look at the potential impacts of irrigation on nutrient export in humid areas, the available on-farm observational data is limited in its content. However, the results obtained support existing literature and provide further evidence on the impact of irrigation as a climate resilient practice and will help direct future studies in the region.more » « less
An official website of the United States government
