Abstract Groundwater extraction in the United States (US) is unsustainable, making it essential to understand the impacts of limited water use on irrigated agriculture. To improve this understanding, we integrated a gridded crop model with satellite observations, recharge estimates, and water survey data to assess the effects of sustainable groundwater withdrawals on US irrigated agricultural production. The gridded crop model agrees with satellite‐based estimates of evapotranspiration (R2 = 0.68), as well as survey data from the United States Department of Agriculture (R2 = 0.82–0.94 for county‐level production and 0.37–0.54 for county‐level yield). Using the optimistic assumption that groundwater extraction equals effective aquifer recharge rate, we find that sustainable groundwater use decreases US irrigated production of maize, soybean, and winter wheat by 20%, 6%, and 25%, respectively. Using a more conservative assumption of groundwater availability, US irrigated production of maize, soybean, and winter wheat decreases by 45%, 37%, and 36%, respectively. The wide range of simulated losses is driven by considerable uncertainty in surface water and groundwater interactions, as well as accounting for the many aspects of sustainability. Our results demonstrate the vulnerability of US irrigated agriculture to unsustainable groundwater pumping, highlighting the difficulty of expanding or even maintaining irrigated food production in the face of climate change, population growth, and shifting dietary demands. These findings are based on reducing pumping by fallowing irrigated farmland; however, alternate pumping reduction strategies or technological advances in crop genetics and irrigation could produce different results. 
                        more » 
                        « less   
                    
                            
                            Irrigation benefits outweigh costs in more US croplands by mid-century
                        
                    
    
            Abstract Irrigation can increase crop yields and could be a key climate adaptation strategy. However, future water availability is uncertain. Here we explore the economic costs and benefits of existing and expanded irrigation of maize and soybean throughout the United States. We examine both middle and end of the 21st-century conditions under future climates that span the range of projections. By mid-century we find an expansion in the area where the benefits of irrigation outweigh groundwater pumping and equipment ownership costs. Increased crop water demands limit the region where maize could be sustainably irrigated, but sustainably irrigated soybean is likely feasible throughout regions of the midwestern and southeastern United States. Shifting incentives for installing and maintaining irrigation equipment could place additional challenges on resource availability. It will be important for decision makers to understand and account for local water demand and availability when developing policies guiding irrigation installation and use. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1848018
- PAR ID:
- 10440889
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Crop yield depends on multiple factors, including climate conditions, soil characteristics, and available water. The objective of this study was to evaluate the impact of projected temperature and precipitation changes on crop yields in the Monocacy River Watershed in the Mid-Atlantic United States based on climate change scenarios. The Soil and Water Assessment Tool (SWAT) was applied to simulate watershed hydrology and crop yield. To evaluate the effect of future climate projections, four global climate models (GCMs) and three representative concentration pathways (RCP 4.5, 6, and 8.5) were used in the SWAT model. According to all GCMs and RCPs, a warmer climate with a wetter Autumn and Spring and a drier late Summer season is anticipated by mid and late century in this region. To evaluate future management strategies, water budget and crop yields were assessed for two scenarios: current rainfed and adaptive irrigated conditions. Irrigation would improve corn yields during mid-century across all scenarios. However, prolonged irrigation would have a negative impact due to nutrients runoff on both corn and soybean yields compared to rainfed condition. Decision tree analysis indicated that corn and soybean yields are most influenced by soil moisture, temperature, and precipitation as well as the water management practice used (i.e., rainfed or irrigated). The computed values from the SWAT modeling can be used as guidelines for water resource managers in this watershed to plan for projected water shortages and manage crop yields based on projected climate change conditions.more » « less
- 
            Efficient irrigation technologies, which seem to promise reduced production costs and water consumption in heavily irrigated areas, may instead be driving increased irrigation use in areas that were not traditionally irrigated. As a result, the total dependence on supplemental irrigation for crop production and revenue is steadily increasing across the contiguous United States. Quantifying this dependence has been hampered by a lack of comprehensive irrigated and dryland yield and harvested area data outside of major irrigated regions, despite the importance and long history of irrigation applications in agriculture. This study used a linear regression model to disaggregate lumped agricultural statistics and estimate average irrigated and dryland yields at the state level for five major row crops: corn, cotton, hay, soybeans, and wheat. For 1945–2015, we quantified crop production, irrigation enhancement revenue, and irrigated and dryland areas in both intensively irrigated and marginally-dependent states, where both irrigated and dryland farming practices are implemented. In 2015, we found that irrigating just the five commodity crops enhanced revenue by ~$7 billion across all states with irrigation. In states with both irrigated and dryland practices, 23% of total produced area relied on irrigation, resulting in 7% more production than from dryland practices. There was a clear response to increasing biofuel demand, with the addition of more than 3.6 million ha of irrigated corn and soybeans in the last decade in marginally-dependent states. Since 1945, we estimate that yield enhancement due to irrigation has resulted in over $465 billion in increased revenue across the contiguous United States (CONUS). Example applications of this dataset include estimating historical water use, evaluating the effects of environmental policies, developing new resource management strategies, economic risk analyses, and developing tools for farmer decision making.more » « less
- 
            Abstract. Irrigation has important implications for sustaining global food production by enabling crop water demand to be met even under dry conditions.Added water also cools crop plants through transpiration; irrigation mightthus play an important role in a warmer climate by simultaneously moderating water and high temperature stresses. Here we used satellite-derived evapotranspiration estimates, land surface temperature (LST) measurements, and crop phenological stage information from Nebraska maize to quantify how irrigation relieves both water and temperature stresses. Unlike air temperature metrics, satellite-derived LST revealed a significant irrigation-induced cooling effect, especially during the grain filling period (GFP) of crop growth. This cooling appeared to extend the maize growing season, especially for GFP, likely due to the stronger temperature sensitivity of phenological development during this stage. Our analysis also revealed that irrigation not only reduced water and temperature stress but also weakened the response of yield to these stresses. Specifically, temperature stress was significantly weakened for reproductive processes in irrigated maize. Attribution analysis further suggested that water and high temperature stress alleviation was responsible for 65±10 % and 35±5.3 % of the irrigation yield benefit, respectively. Our study underlines the relative importance of high temperature stress alleviation in yield improvement and the necessity of simulating crop surface temperature to better quantify heat stress effects in crop yield models. Finally, considering the potentially strong interaction between water and heat stress, future research on irrigation benefits should explore the interaction effects between heat and drought alleviation.more » « less
- 
            Abstract Groundwater irrigation of cropland is expanding worldwide with poorly known implications for climate change. This study compares experimental measurements of the net global warming impact of a rainfed versus a groundwater‐irrigated corn (maize)–soybean–wheat, no‐till cropping system in the Midwest US, the region that produces the majority of U.S. corn and soybean. Irrigation significantly increased soil organic carbon (C) storage in the upper 25 cm, but not by enough to make up for the CO2‐equivalent (CO2e) costs of fossil fuel power, soil emissions of nitrous oxide (N2O), and degassing of supersaturated CO2and N2O from the groundwater. A rainfed reference system had a net mitigating effect of −13.9 (±31) g CO2e m−2 year−1, but with irrigation at an average rate for the region, the irrigated system contributed to global warming with net greenhouse gas (GHG) emissions of 27.1 (±32) g CO2e m−2 year−1. Compared to the rainfed system, the irrigated system had 45% more GHG emissions and 7% more C sequestration. The irrigation‐associated increase in soil N2O and fossil fuel emissions contributed 18% and 9%, respectively, to the system's total emissions in an average irrigation year. Groundwater degassing of CO2and N2O are missing components of previous assessments of the GHG cost of groundwater irrigation; together they were 4% of the irrigated system's total emissions. The irrigated system's net impact normalized by crop yield (GHG intensity) was +0.04 (±0.006) kg CO2e kg−1yield, close to that of the rainfed system, which was −0.03 (±0.002) kg CO2e kg−1yield. Thus, the increased crop yield resulting from irrigation can ameliorate overall GHG emissions if intensification by irrigation prevents land conversion emissions elsewhere, although the expansion of irrigation risks depletion of local water resources.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
