skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sensitivity of Tropical Insectivorous Birds to the Anthropocene: A Review of Multiple Mechanisms and Conservation Implications
Epigraph: “The house is burning. We do not need a thermometer. We need a fire hose.” (P. 102, Janzen and Hallwachs,2019). Insectivorous birds are declining widely, and for diverse reasons. Tropical insectivorous birds, more than 60% of all tropical birds, are particularly sensitive to human disturbances including habitat loss and fragmentation, intensive agriculture and pesticide use, and climate change; and the mechanisms are incompletely understood. This review addresses multiple, complementary and sometimes synergistic explanations for tropical insectivore declines, by categorizing explanations into ultimate vs. proximate, and direct versus indirect. Ultimate explanations are diverse human Anthropocene activities and the evolutionary history of these birds. This evolutionary history, synthesized by the Biotic Challenge Hypothesis (BCH), explains tropical insectivorous birds' vulnerabilities to many proximate threats as a function of both these birds' evolutionary feeding specialization and poor dispersal capacity. These traits were favored evolutionarily by both the diversity of insectivorous clades competing intensely for prey and co-evolution with arthropods over long evolutionary time periods. More proximate, ecological threats include bottom-up forces like declining insect populations, top-down forces like meso-predator increases, plus the Anthropocene activities underlying these factors, especially habitat loss and fragmentation, agricultural intensification, and climate change. All these conditions peak in the lowland, mainland Neotropics, where insectivorous bird declines have been repeatedly documented, but also occur in other tropical locales and continents. This multiplicity of interacting evolutionary and ecological factors informs conservation implications and recommendations for tropical insectivorous birds: (1) Why they are so sensitive to global change phenomena is no longer enigmatic, (2) distinguishing ultimate versus proximate stressors matters, (3) evolutionary life-histories predispose these birds to be particularly sensitive to the Anthropocene, (4) tropical regions and continents vary with respect to these birds' ecological sensitivity, (5) biodiversity concepts need stronger incorporation of species' evolutionary histories, (6) protecting these birds will require more, larger reserves for multiple reasons, and (7) these birds have greater value than generally recognized.  more » « less
Award ID(s):
2147043
PAR ID:
10589592
Author(s) / Creator(s):
Publisher / Repository:
Frontiers in Ecology and Evolution
Date Published:
Journal Name:
Frontiers in Ecology and Evolution
Volume:
9
ISSN:
2296-701X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. North America’s grassland birds remain in crisis despite decades of conservation effort s. This review pro- vides an overview of factors contributing to these declines, as well as strategies and resources available to a diversity of stakeholders to help conserve grassland bird communities with an emphasis on the Great Plains—a grassland region of global ecological significance and a habitat stronghold for grassland birds. Grassland bird declines are driven by historical and continuing threats across the full annual cycle including grassland habitat loss, agriculture intensification, woody encroachment, and disruption of fire and grazing regimes. More recently, energy development activities, the use of neonicotinoid pesticides, and anthropogenic climate change have emerged as additional threats. While threats to grassland birds are numerous and often synergistic, possibilities for conservation are also diverse and multifaceted. Land set-aside programs, incentives and voluntary practices for producers, improved environmental manage- ment by energy and utility companies, and policy and regulation can all contribute to the conservation of these unique species. We suggest that future grassland bird research should focus on poorly studied aspects of the annual cycle, such as overwinter survival and habitat use, and the migratory period, which remains completely unexplored for many species. Filling these knowledge gaps may facilitate more so- phisticated population modeling that can identify limiting factors and more effectively guide investment in conservation. 
    more » « less
  2. Ecological niches are pivotal in addressing questions of species richness gradients like the Latitudinal Diversity Gradient (LDG). The Hutchinsonian niche hypervolume model and derivatives are some of the most proven tools. Accordingly, species occupy mathematically convenient spaces in relation to functional, especially trophic, relationships, as well as the physical environment. In one application, the number of species in a community is a function of average niche sizes, overlaps, and total niche volume. Alternatively, the number of coexisting species derives from invasibility criteria in relation to species-interaction modules. The daunting complexity of tropical communities begs the question of how well these ecologically inspired paradigms accommodate present knowledge of species interactions and functional relationships. Recent studies of hyperdiverse tropical insectivorous bird species suggests reevaluating the applicability of such concepts. Here I review Neotropical, arthropod-feeding bird species interactions needed to explain these species’ trophic relationships, including their diets, feeding substrates, and behavioral and morphological traits relevant to resource acquisition. Important emergent generalizations include extraordinary specializations on both prey resource locations (substrates) and behaviors, rather than on particular resourcesper se, and a preponderance of adaptations to exploit the anti-predator traits of prey, traits evolved in response to other predators. These specializations and implicit arms races necessitate evolutionary approaches to niches necessary to understand the relevant natural history and ecology, how these species compete interspecifically, and even how these predator species interact with preyviaevolutionary enhancements. These findings, compared and contrasted with prevailing concepts and findings, suggest expanding niche concepts to accommodate both the large temporal and regional geographic scales to understand the accumulated species richness of the mainland Neotropics. These trophic specializations also highlight why many of these birds are so sensitive to human disturbances, especially habitat loss, fragmentation, and degradation. 
    more » « less
  3. Black-throated blue warbler (Setophaga caerulescens) populations have been declining at the southern edge of the breeding range in North Carolina over the past two decades. Determining the causes of population declines in migratory species requires knowledge of the threats faced throughout the entire annual cycle, necessitating accurate information about the migratory routes and non-breeding areas used by birds. We used light-level geolocators to identify the fall migratory routes and non-breeding distributions of adults breeding at the southern edge of the range in North Carolina (n = 5), where populations are declining, and at the core of the range in New Hampshire (n = 8), where populations are stable. The strength of migratory connectivity was moderate (mean = 0.42). New Hampshire birds used non-breeding areas broadly distributed across the Caribbean, whereas North Carolina birds used a restricted non-breeding area largely in the Dominican Republic. Suitable forest cover declined at a higher rate from 2000 to 2019 in the Dominican Republic than in other Caribbean countries (8.4% vs. 2–4% loss), exposing birds from the trailing edge to significantly higher suitable habitat loss on the non-breeding grounds compared with range-core birds. Birds from the two study populations also exhibited differing migratory routes, with North Carolina birds migrating south through Florida and many New Hampshire birds performing an overwater flight from the Carolinas to the Caribbean. Our results suggest the possibility that, at least for this species, forest loss on the island of Hispaniola could be exacerbating population declines at the southern edge of the breeding range in North Carolina. 
    more » « less
  4. Atkinson, Phil (Ed.)
    Shade coffee is a well-studied cultivation strategy that creates habitat for tropical birds while also maintaining agricultural yield. Although there is a general consensus that shade coffee is more “bird-friendly” than a sun coffee monoculture, little work has investigated the effects of specific shade tree species on insectivorous bird diversity. This study involved avian foraging observations, mist netting data, temperature loggers, and arthropod sampling to investigate bottom-up effects of two shade tree taxa - native Cordia sp. and introduced Grevillea robusta - on insectivorous bird communities in central Kenya. Results indicate that foliage-dwelling arthropod abundance, and the richness and overall abundance of foraging birds were all higher on Cordia than on Grevillea. Furthermore, multivariate analyses of the bird community indicate a significant difference in community composition between the canopies of the two tree species, though the communities of birds using the coffee understory under these shade trees were similar. In addition, both shade trees buffered temperatures in coffee, and temperatures under Cordia were marginally cooler than under Grevillea. These results suggest that native Cordia trees on East African shade coffee farms may be better at mitigating habitat loss and attracting insectivorous birds that could promote ecosystem services. Identifying differences in prey abundance and preferences in bird foraging behavior not only fills basic gaps in our understanding of the ecology of East African coffee farms, it also aids in developing region-specific information to optimize functional diversity, ecosystem services, and the conservation of birds in agricultural landscapes. 
    more » « less
  5. Abstract AimTropical regions harbour over half of the world's mammals and birds, but how their communities have assembled over evolutionary timescales remains unclear. To compare eco‐evolutionary assembly processes between tropical mammals and birds, we tested how hypotheses concerning niche conservatism, environmental stability, environmental heterogeneity and time‐for‐speciation relate to tropical vertebrate community phylogenetic and functional structure. LocationTropical rainforests worldwide. Time periodPresent. Major taxa studiedGround‐dwelling and ground‐visiting mammals and birds. MethodsWe used in situ observations of species identified from systematic camera trap sampling as realized communities from 15 protected tropical rainforests in four tropical regions worldwide. We quantified standardized phylogenetic and functional structure for each community and estimated the multi‐trait phylogenetic signal (PS) in ecological strategies for the four regional species pools of mammals and birds. Using linear regression models, we test three non‐mutually exclusive hypotheses by comparing the relative importance of colonization time, palaeo‐environmental changes in temperature and land cover since 3.3 Mya, contemporary seasonality in temperature and productivity and environmental heterogeneity for predicting community phylogenetic and functional structure. ResultsPhylogenetic and functional structure showed non‐significant yet varying tendencies towards clustering or dispersion in all communities. Mammals had stronger multi‐trait PS in ecological strategies than birds (mean PS: mammal = 0.62, bird = 0.43). Distinct dominant processes were identified for mammal and bird communities. For mammals, colonization time and elevation range significantly predicted phylogenetic clustering and functional dispersion tendencies respectively. For birds, elevation range and contemporary temperature seasonality significantly predicted phylogenetic and functional clustering tendencies, respectively, while habitat diversity significantly predicted functional dispersion tendencies. Main conclusionsOur results reveal different eco‐evolutionary assembly processes structuring contemporary tropical mammal and bird communities over evolutionary timescales that have shaped tropical diversity. Our study identified marked differences among taxonomic groups in the relative importance of historical colonization and sensitivity to environmental change. 
    more » « less