skip to main content


Title: Light-level geolocation reveals moderate levels of migratory connectivity for declining and stable populations of Black-throated Blue Warblers ( Setophaga caerulescens )
Black-throated blue warbler (Setophaga caerulescens) populations have been declining at the southern edge of the breeding range in North Carolina over the past two decades. Determining the causes of population declines in migratory species requires knowledge of the threats faced throughout the entire annual cycle, necessitating accurate information about the migratory routes and non-breeding areas used by birds. We used light-level geolocators to identify the fall migratory routes and non-breeding distributions of adults breeding at the southern edge of the range in North Carolina (n = 5), where populations are declining, and at the core of the range in New Hampshire (n = 8), where populations are stable. The strength of migratory connectivity was moderate (mean = 0.42). New Hampshire birds used non-breeding areas broadly distributed across the Caribbean, whereas North Carolina birds used a restricted non-breeding area largely in the Dominican Republic. Suitable forest cover declined at a higher rate from 2000 to 2019 in the Dominican Republic than in other Caribbean countries (8.4% vs. 2–4% loss), exposing birds from the trailing edge to significantly higher suitable habitat loss on the non-breeding grounds compared with range-core birds. Birds from the two study populations also exhibited differing migratory routes, with North Carolina birds migrating south through Florida and many New Hampshire birds performing an overwater flight from the Carolinas to the Caribbean. Our results suggest the possibility that, at least for this species, forest loss on the island of Hispaniola could be exacerbating population declines at the southern edge of the breeding range in North Carolina.  more » « less
Award ID(s):
2224545
NSF-PAR ID:
10490756
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
The Resilience Alliance, Avian Conservation and Ecology
Date Published:
Journal Name:
Avian Conservation and Ecology
Volume:
18
Issue:
2
ISSN:
1712-6568
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding the demographic drivers of range contractions is important for predicting species' responses to climate change; however, few studies have examined the effects of climate change on survival and recruitment across species' ranges. We show that climate change can drive trailing edge range contractions through the effects on apparent survival, and potentially recruitment, in a migratory songbird. We assessed the demographic drivers of trailing edge range contractions using a long‐term demography dataset for the black‐throated blue warbler (Setophaga caerulescens) collected across elevational climate gradients at the trailing edge and core of the breeding range. We used a Bayesian hierarchical model to estimate the effect of climate change on apparent survival and recruitment and to forecast population viability at study plots through 2040. The trailing edge population at the low‐elevation plot became locally extinct by 2017. The local population at the mid‐elevation plot at the trailing edge gradually declined and is predicted to become extirpated by 2040. Population declines were associated with warming temperatures at the mid‐elevation plot, although results were more equivocal at the low‐elevation plot where we had fewer years of data. Population density was stable or increasing at the range core, although warming temperatures are predicted to cause population declines by 2040 at the low‐elevation plot. This result suggests that even populations within the geographic core of the range are vulnerable to climate change. The demographic drivers of local population declines varied between study plots, but warming temperatures were frequently associated with declining rates of population growth and apparent survival. Declining apparent survival in our study system is likely to be associated with increased adult emigration away from poor‐quality habitats. Our results suggest that demographic responses to warming temperatures are complex and dependent on local conditions and geographic range position, but spatial variation in population declines is consistent with the climate‐mediated range shift hypothesis. Local populations of black‐throated blue warblers near the warm‐edge range boundary at low latitudes and low elevations are likely to be the most vulnerable to climate change, potentially leading to local extirpation and range contractions.

     
    more » « less
  2. Abstract Wetland bird species have been declining in population size worldwide as climate warming and land-use change affect their suitable habitats. We used species distribution models (SDMs) to predict changes in range dynamics for 64 non-passerine wetland birds breeding in Europe, including range size, position of centroid, and margins. We fitted the SDMs with data collected for the first European Breeding Bird Atlas and climate and land-use data to predict distributional changes over a century (the 1970s–2070s). The predicted annual changes were then compared to observed annual changes in range size and range centroid over a time period of 30 years using data from the second European Breeding Bird Atlas. Our models successfully predicted ca. 75% of the 64 bird species to contract their breeding range in the future, while the remaining species (mostly southerly breeding species) were predicted to expand their breeding ranges northward. The northern margins of southerly species and southern margins of northerly species, both, predicted to shift northward. Predicted changes in range size and shifts in range centroids were broadly positively associated with the observed changes, although some species deviated markedly from the predictions. The predicted average shift in core distributions was ca. 5 km yr −1 towards the north (5% northeast, 45% north, and 40% northwest), compared to a slower observed average shift of ca. 3.9 km yr −1 . Predicted changes in range centroids were generally larger than observed changes, which suggests that bird distribution changes may lag behind environmental changes leading to ‘climate debt’. We suggest that predictions of SDMs should be viewed as qualitative rather than quantitative outcomes, indicating that care should be taken concerning single species. Still, our results highlight the urgent need for management actions such as wetland creation and restoration to improve wetland birds’ resilience to the expected environmental changes in the future. 
    more » « less
  3. Abstract Purpose

    Trailing-edge populations at the low-latitude, receding edge of a shifting range face high extinction risk from climate change unless they are able to track optimal environmental conditions through dispersal.

    Methods

    We fit dispersal models to the locations of 3165 individually-marked black-throated blue warblers (Setophaga caerulescens) in the southern Appalachian Mountains in North Carolina, USA from 2002 to 2023. Black-throated blue warbler breeding abundance in this population has remained relatively stable at colder and wetter areas at higher elevations but has declined at warmer and drier areas at lower elevations.

    Results

    Median dispersal distance of young warblers was 917 m (range 23–3200 m), and dispersal tended to be directed away from warm and dry locations. In contrast, adults exhibited strong site fidelity between breeding seasons and rarely dispersed more than 100 m (range 10–1300 m). Consequently, adult dispersal kernels were much more compact and symmetric than natal dispersal kernels, suggesting adult dispersal is unlikely a driving force of declines in this population.

    Conclusion

    Our findings suggest that directional natal dispersal may mitigate fitness costs for trailing-edge populations by allowing individuals to track changing climate and avoid warming conditions at warm-edge range boundaries.

     
    more » « less
  4. Abstract

    Global loss of biodiversity has placed new urgency on the need to understand factors regulating species response to rapid environmental change. While specialists are often less resilient to rapid environmental change than generalists, species‐level analyses may obscure the extent of specialization when locally adapted populations vary in climate tolerances. Until recently, quantification of the degree of climate specialization in migratory birds below the species level was hindered by a lack of genomic and tracking information, but recent technological advances have helped to overcome these barriers. Here we take a genome‐wide genetic approach to mapping population‐specific migratory routes and quantifying niche breadth within genetically distinct populations of a migratory bird, the willow flycatcher (Empidonax traillii), which exhibits variation in the severity of population declines across its breeding range. While our sample size is restricted to the number of genetically distinct populations within the species, our results support the idea that locally adapted populations of the willow flycatcher with narrow climatic niches across seasons are already federally listed as endangered or in steep decline, while populations with broader climatic niches have remained stable in recent decades. Overall, this work highlights the value of quantifying niche breadth within genetically distinct groups across time and space when attempting to understand the factors that facilitate or constrain the response of locally adapted populations to rapid environmental change.

     
    more » « less
  5. Abstract Aim

    We compared the parasite assemblages of over‐wintering migratory birds and permanent residents on the wintering grounds. We determined whether parasite sharing between migratory and resident birds is influenced by host phylogenetic relatedness. We then inferred whether migratory birds transport haemosporidian parasite lineages between the breeding and wintering grounds.

    Location

    Sierra de Bahoruco National Park, Dominican Republic, Hispaniola.

    Taxa

    Migratory and resident birds (primarily Aves: Passeriformes) and their haemosporidian parasites (order Haemosporida,Plasmodium,HaemoproteusandParahaemoproteus).

    Methods

    We used mist nets to capture birds in thorn scrub, broadleaf dry forests and pine forests during midwinter. We used molecular methods to recognize haemosporidian parasites in blood samples, and genotyped infections based on the nucleotide differences in a region of the parasite cytochromebgene.

    Results and Main Conclusion

    We identified 505 infections by 32 haemosporidian parasite lineages in 1,780 blood samples from 37 resident species, and in 901 blood samples from 14 overwintering migratory species, over five years at the same sites. Infection prevalence varied among migratory species from zero to 13%, whereas infection prevalence among resident species ranged up to 77%. Host relatedness did not predict parasite assemblage similarity. We discuss four hypotheses for the rarity of haemosporidian infections in migratory birds during winter, and for the infrequency of parasite sharing between migratory and resident birds: (a) relative abundance and host preferences of dipteran vectors lower parasite transmission to migratory birds; (b) parasite lineages adapted to infect endemic Caribbean hosts are unable to infect migratory species; (c) the physiology of migratory birds after migration and during winter reduces parasite survival; and (d) infected individuals suffer more pronounced mortality rates during migration. We highlight the link between host–parasite coevolution and the physiological adaptations associated with avian seasonal migration.

     
    more » « less