skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Population Genomics of Premature Termination Codons in Cavefish With Substantial Trait Loss
Abstract Loss-of-function alleles are a pertinent source of genetic variation with the potential to contribute to adaptation. Cave-adapted organisms exhibit striking loss of ancestral traits such as eyes and pigment, suggesting that loss-of-function alleles may play an outsized role in these systems. Here, we leverage 141 whole genome sequences to evaluate the evolutionary history and adaptive potential of single nucleotide premature termination codons (PTCs) in Mexican tetra. We find that cave populations contain significantly more PTCs at high frequency than surface populations. We also find that PTCs occur more frequently in genes with inherent relaxed evolutionary constraint relative to the rest of the genome. Using SLiM to simulate PTC evolution in a cavefish population, we show that the smaller population size and increased genetic drift is sufficient to account for the observed increase in PTC frequency in cave populations without positive selection. Using CRISPR-Cas9, we show that mutation of one of these genes, pde6c, produces phenotypes in surface Mexican tetra that mimic cave-derived traits. Finally, we identify a small subset of candidate genes that contain high-frequency PTCs in cave populations, occur within selective sweeps, and may contribute to beneficial traits such as reduced energy expenditure, suggesting that a handful of PTCs may be adaptive. Overall, our work provides a rare characterization of PTCs across wild populations and finds that they may have an important role in loss-of-function phenotypes, contributing to a growing body of literature showing genome evolution through relaxed constraint in subterranean organisms.  more » « less
Award ID(s):
2202359 2316784 1933076
PAR ID:
10589668
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Molecular Biology and Evolution
Volume:
42
Issue:
2
ISSN:
0737-4038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Laboratory studies have demonstrated that a single phenotype can be produced by many different genotypes; however, in natural systems, it is frequently found that phenotypic convergence is due to parallel genetic changes. This suggests a substantial role for constraint and determinism in evolution and indicates that certain mutations are more likely to contribute to phenotypic evolution. Here we use whole genome resequencing in the Mexican tetra,Astyanax mexicanus, to investigate how selection has shaped the repeated evolution of both trait loss and enhancement across independent cavefish lineages. We show that selection on standing genetic variation and de novo mutations both contribute substantially to repeated adaptation. Our findings provide empirical support for the hypothesis that genes with larger mutational targets are more likely to be the substrate of repeated evolution and indicate that features of the cave environment may impact the rate at which mutations occur. 
    more » « less
  2. Abstract A major goal of modern biology is connecting phenotype with its underlying genetic basis. The Mexican cavefish (Astyanax mexicanus), a characin fish species comprised of a surface ecotype and a cave-derived ecotype, is well suited as a model to study the genetic mechanisms underlying adaptation to extreme environments. Here we map 206 previously published quantitative trait loci (QTL) for cave-derived traits in A. mexicanus to the newest version of the surface fish genome assembly, AstMex3. These analyses revealed that QTL cluster in the genome more than expected by chance, and this clustering is not explained by the distribution of genes in the genome. To investigate whether certain characteristics of the genome facilitate phenotypic evolution, we tested whether genomic characteristics associated with increased opportunities for mutation, such as highly mutagenic CpG sites, are reliable predictors of the sites of trait evolution but did not find any significant trends. Finally, we combined the QTL map with previously collected expression and selection data to identify 36 candidate genes that may underlie the repeated evolution of cave phenotypes, including rgrb, which is predicted to be involved in phototransduction. We found this gene has disrupted exons in all non-hybrid cave populations but intact reading frames in surface fish. Overall, our results suggest specific regions of the genome may play significant roles in driving adaptation to the cave environment in Astyanax mexicanus and demonstrate how this compiled dataset can facilitate our understanding of the genetic basis of repeated evolution in the Mexican cavefish. 
    more » « less
  3. Sleep is an evolutionarily ancient behavior, yet multiple cave-dwelling populations of the Mexican tetra, Astyanax mexicanus, have converged on sleep loss compared to surface fish. However, most of the 34 cave populations remain unstudied, and sleep in natural habitats is largely unknown. To address this, we measured sleep and activity in 15 representative populations of surface, cave, and hybrid populations. All cavefish and hybrid populations tested exhibited drastically reduced sleep, including hybrid populations with diverse eye and pigmentation phenotypes. Mapping behavior onto the A. mexicanus phylogeny revealed that reduced sleep and elevated locomotor activity evolved independently multiple times. Field experiments confirmed that wild fish also exhibit sleep loss, paralleling laboratory findings. These results demonstrate deep evolutionary convergence on sleep loss across cavefish lineages and suggest that sleep reduction is a primary trait contributing to adaptation in subterranean environments. 
    more » « less
  4. Fluctuating environmental conditions are ubiquitous in natural systems, and populations have evolved various strategies to cope with such fluctuations. The particular mechanisms that evolve profoundly influence subsequent evolutionary dynamics. One such mechanism is phenotypic plasticity, which is the ability of a single genotype to produce alternate phenotypes in an environmentally dependent context. Here, we use digital organisms (self-replicating computer programs) to investigate how adaptive phenotypic plasticity alters evolutionary dynamics and influences evolutionary outcomes in cyclically changing environments. Specifically, we examined the evolutionary histories of both plastic populations and non-plastic populations to ask: (1) Does adaptive plasticity promote or constrain evolutionary change? (2) Are plastic populations better able to evolve and then maintain novel traits? And (3), how does adaptive plasticity affect the potential for maladaptive alleles to accumulate in evolving genomes? We find that populations with adaptive phenotypic plasticity undergo less evolutionary change than non-plastic populations, which must rely on genetic variation from de novo mutations to continuously readapt to environmental fluctuations. Indeed, the non-plastic populations undergo more frequent selective sweeps and accumulate many more genetic changes. We find that the repeated selective sweeps in non-plastic populations drive the loss of beneficial traits and accumulation of maladaptive alleles, whereas phenotypic plasticity can stabilize populations against environmental fluctuations. This stabilization allows plastic populations to more easily retain novel adaptive traits than their non-plastic counterparts. In general, the evolution of adaptive phenotypic plasticity shifted evolutionary dynamics to be more similar to that of populations evolving in a static environment than to non-plastic populations evolving in an identical fluctuating environment. All natural environments subject populations to some form of change; our findings suggest that the stabilizing effect of phenotypic plasticity plays an important role in subsequent adaptive evolution. 
    more » « less
  5. Many organisms facultatively produce different phenotypes depending on their environment, yet relatively little is known about the genetic bases of such plasticity in natural populations. In this study, we describe the genetic variation underlying an extreme form of plasticity––resource polyphenism––in Mexican spadefoot toad tadpoles, Spea multiplicata. Depending on their environment, these tadpoles develop into one of two drastically different forms: a carnivore morph or an omnivore morph. We collected both morphs from two ponds that differed in which morph had an adaptive advantage and performed genome-wide association studies of phenotype (carnivore vs. omnivore) and adaptive plasticity (adaptive vs. maladaptive environmental assessment). We identified four quantitative trait loci associated with phenotype and nine with adaptive plasticity, two of which exhibited signatures of minor allele dominance and two of which (one phenotype locus and one adaptive plasticity locus) did not occur as minor allele homozygotes. Investigations into the genetics of plastic traits in natural populations promise to provide novel insights into how such complex, adaptive traits arise and evolve. 
    more » « less