skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Universal gate set for optical lattice based atom interferometry
In this paper, we propose a paradigm for atom interferometry and demonstrate that there exists a universal set of atom optic components for inertial sensing. These components constitute gates with which we carry out quantum operations and represent input-output matter wave transformations between lattice eigenstates. Each gate is associated with a modulation pattern of the position of the optical lattice according to machine-designed protocols. In this methodology, a sensor can be reprogramed to respond to an evolving set of design priorities without modifying the hardware. We assert that such a gate set is metrologically universal, in analogy to universal gate sets for quantum computing. Experimental confirmation of the designed operation is demonstrated via imaging of the spatial evolution of a Bose-Einstein condensate in an optical lattice and by measurement of the momentum probabilities following time-of-flight expansion. The representation of several basic quantum sensing circuits is presented for the measurement of inertial forces, rotating reference frames, and gravity gradients. Published by the American Physical Society2025  more » « less
Award ID(s):
2016244 2317149
PAR ID:
10589682
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Physical Review Research
Date Published:
Journal Name:
Physical Review Research
Volume:
7
Issue:
1
ISSN:
2643-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we investigate a design approach of reinforcement learning to engineer a gyroscope in an optical lattice for the inertial sensing of rotations. Our methodology is not based on traditional atom interferometry, that is, splitting, reflecting, and recombining wavefunction components. Instead, the learning agent is assigned the task of generating lattice shaking sequences that optimize the sensitivity of the gyroscope to rotational signals in an end-to-end design philosophy. What results is an interference device that is completely distinct from the familiar Mach-Zehnder-type interferometer. For the same total interrogation time, the end-to-end design leads to a twentyfold improvement in sensitivity over traditional Bragg interferometry. Published by the American Physical Society2024 
    more » « less
  2. Performing interferometry in an optical lattice formed by standing waves of light offers potential advantages over its free-space equivalents since the atoms can be confined and manipulated by the optical potential. We demonstrate such an interferometer in a one-dimensional lattice and show the ability to control the atoms by imaging and reconstructing the wave function at many stages during its cycle. An acceleration signal is applied, and the resulting performance is seen to be close to the optimum possible for the time-space area enclosed according to quantum theory. Our methodology of machine design enables the sensor to be reconfigurable on the fly, and when scaled up, offers the potential to make state-of-the art inertial and gravitational sensors that will have a wide range of potential applications. Published by the American Physical Society2024 
    more » « less
  3. We analyze the use of photonic links to enable large-scale fault-tolerant connectivity of locally error-corrected modules based on neutral atom arrays. Our approach makes use of recent theoretical results showing the robustness of surface codes to boundary noise and combines recent experimental advances in atom-array quantum computing with logical qubits with optical quantum networking techniques. We find the conditions for fault tolerance can be achieved with local two-qubit Rydberg gate and nonlocal Bell-pair errors below 1% and 10%, respectively, without requiring distillation or space-time overheads. Realizing the interconnects with a lens, a single optical cavity, or an array of cavities enables—with sufficient multiplexing—a Bell-pair generation rate in the 1–50 MHz range. When directly interfacing logical qubits, this rate translates to error-correction cycles in the 25–2000 kHz range, satisfying all requirements for fault tolerance and in the upper range fast enough for 100 kHz logical clock cycles. Published by the American Physical Society2025 
    more » « less
  4. In recent years, applications of quantum simulation have been developed to study the properties of strongly interacting theories. This has been driven by two factors: on the one hand, needs from theorists to have access to physical observables that are prohibitively difficult to study using classical computing; on the other hand, quantum hardware becoming increasingly reliable and scalable to larger systems. In this work, we discuss the feasibility of using quantum optical simulation for studying scattering observables that are presently inaccessible via lattice QCD and are at the core of the experimental program at Jefferson Laboratory, the future Electron-Ion Collider, and other accelerator facilities. We show that recent progress in measurement-based photonic quantum computing can be leveraged to provide deterministic generation of required exotic gates and implementation in a single photonic quantum processor. Published by the American Physical Society2024 
    more » « less
  5. Correlated quantum many-body phenomena in lattice models have been identified as a set of physically interesting problems that cannot be solved classically. Analog quantum simulators, in photonics and microwave superconducting circuits, have emerged as near-term platforms to address these problems. An important ingredient in practical quantum simulation experiments is the tomography of the implemented Hamiltonians—while this can easily be performed if we have individual measurement access to each qubit in the simulator, this could be challenging to implement in many hardware platforms. In this paper, we present a scheme for tomography of quantum simulators which can be described by a Bose-Hubbard Hamiltonian while having measurement access to only some sites on the boundary of the lattice. We present an algorithm that uses the experimentally routine transmission and two-photon correlation functions, measured at the boundary, to extract the Hamiltonian parameters at the standard quantum limit. Furthermore, by building on quantum enhanced spectroscopy protocols that, we show that with the additional ability to switch on and off the on-site repulsion in the simulator, we can sense the Hamiltonian parameters beyond the standard quantum limit. Published by the American Physical Society2024 
    more » « less