skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Seasonal structural stability promoted by forest diversity and composition explains overyielding
Abstract The stability of forest productivity is a widely studied phenomenon often associated with tree species diversity. Yet, drivers of stability in forest structure and its consequences for forest productivity remain poorly understood. Using a large (10 ha) young tree diversity experiment, we evaluated how forest structure and multiple dimensions of diversity and composition are related to remotely sensed structural metrics and their stability through the growing season. We then examined whether structural stability (SS) across the growing season (April–October) could explain overyielding (i.e., the net biodiversity effect, NBE) in annual wood productivity. Using Uncrewed Aerial Vehicle‐Light Detecting and Ranging (UAV‐LiDAR), we surveyed experimental tree communities eight times at regular intervals from before bud break to after leaf senescence to derive metrics associated with canopy height heterogeneity, fractional plant cover, and forest structural complexity (based on fractal geometry). The inverse coefficients of variation for each of these three metrics through the season were used as measures of SS. These metrics were then coupled with annual tree inventories to evaluate their relationships with the NBE. Our findings indicate that wood volume and, to some extent, multiple dimensions of diversity and composition (i.e., taxonomic, phylogenetic, and functional) explain remotely sensed metrics of forest structure and their SS. Increases in wood volume as well as functional and phylogenetic diversity and variability (a measure of diversity independent of species richness) were linked to higher SS of forest complexity and canopy height heterogeneity. We further found that higher SS of forest complexity and fractional plant cover were associated with increased overyielding, which was mostly attributable to the complementarity effect. Structural equation models indicate that the stability of structural complexity explains more variation in NBE among plots than dimensions of diversity or variability, highlighting its value as an informative metric that likely integrates multiple drivers associated with overyielding. This study highlights the potential to integrate remote sensing and ecology to disentangle the role of forest SS in shaping ecological processes.  more » « less
Award ID(s):
2021898
PAR ID:
10589842
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology
Volume:
106
Issue:
3
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract AimRapid global change is impacting the diversity of tree species and essential ecosystem functions and services of forests. It is therefore critical to understand and predict how the diversity of tree species is spatially distributed within and among forest biomes. Satellite remote sensing platforms have been used for decades to map forest structure and function but are limited in their capacity to monitor change by their relatively coarse spatial resolution and the complexity of scales at which different dimensions of biodiversity are observed in the field. Recently, airborne remote sensing platforms making use of passive high spectral resolution (i.e., hyperspectral) and active lidar data have been operationalized, providing an opportunity to disentangle how biodiversity patterns vary across space and time from field observations to larger scales. Most studies to date have focused on single sites and/or one sensor type; here we ask how multiple sensor types from the National Ecological Observatory Network’s Airborne Observation Platform (NEON AOP) perform across multiple sites in a single biome at the NEON field plot scale (i.e., 40 m × 40 m). LocationEastern USA. Time period2017–2018. Taxa studiedTrees. MethodsWith a fusion of hyperspectral and lidar data from the NEON AOP, we assess the ability of high resolution remotely sensed metrics to measure biodiversity variation across eastern US temperate forests. We examine how taxonomic, functional, and phylogenetic measures of alpha diversity vary spatially and assess to what degree remotely sensed metrics correlate with in situ biodiversity metrics. ResultsModels using estimates of forest function, canopy structure, and topographic diversity performed better than models containing each category alone. Our results show that canopy structural diversity, and not just spectral reflectance, is critical to predicting biodiversity. Main conclusionsWe found that an approach that jointly leverages spectral properties related to leaf and canopy functional traits and forest health, lidar derived estimates of forest structure, fine‐resolution topographic diversity, and careful consideration of biogeographical differences within and among biomes is needed to accurately map biodiversity variation from above. 
    more » « less
  2. Abstract Forest canopy complexity (i.e., the three‐dimensional structure of the canopy) is often associated with increased species diversity as well as high primary productivity across natural forests. However, canopy complexity, tree diversity, and productivity are often confounded in natural forests, and the mechanisms of these relationships remain unclear. Here, we used two large tree diversity experiments in North America to assess three hypotheses: (1) increasing tree diversity leads to increased canopy complexity, (2) canopy complexity is positively related to tree productivity, and (3) the relationship between tree diversity and tree productivity is indirect and driven by the positive effects of canopy complexity. We found that increasing tree diversity from monocultures to mixtures of 12 species increases canopy complexity and productivity by up to 71% and 73%, respectively. Moreover, structural equation modeling indicates that the effects of tree diversity on productivity are indirect and mediated primarily by changes in internal canopy complexity. Ultimately, we suggest that increasing canopy complexity can be a major mechanism by which tree diversity enhances productivity in young forests. 
    more » « less
  3. Abstract Efforts to catalog global biodiversity have often focused on aboveground taxonomic diversity, with limited consideration of belowground communities. However, diversity aboveground may influence the diversity of belowground communities and vice versa. In addition to taxonomic diversity, the structural diversity of plant communities may be related to the diversity of soil bacterial and fungal communities, which drive important ecosystem processes but are difficult to characterize across broad spatial scales. In forests, canopy structural diversity may influence soil microorganisms through its effects on ecosystem productivity and root architecture, and via associations between canopy structure, stand age, and species richness. Given that structural diversity is one of the few types of diversity that can be readily measured remotely (e.g., using light detection and ranging—LiDAR), establishing links between structural and microbial diversity could facilitate the detection of belowground biodiversity hotspots. We investigated the potential for using remotely sensed information about forest structural diversity as a predictor of soil microbial community richness and composition. We calculated LiDAR‐derived metrics of structural diversity as well as a suite of stand and soil properties from 38 forested plots across the central hardwoods region of Indiana, USA, to test whether forest canopy structure is linked with the community richness and diversity of four key soil microbial groups: bacteria, fungi, arbuscular mycorrhizal (AM) fungi, and ectomycorrhizal (EM) fungi. We found that the density of canopy vegetation is positively associated with the taxonomic richness (alpha diversity) of EM fungi, independent of changes in plant taxonomic richness. Further, structural diversity metrics were significantly correlated with the overall community composition of bacteria, EM, and total fungal communities. However, soil properties were the strongest predictors of variation in the taxonomic richness and community composition of microbial communities in comparison with structural diversity and tree species diversity. As remote sensing tools and algorithms are rapidly advancing, these results may have important implications for the use of remote sensing of vegetation structural diversity for management and restoration practices aimed at preserving belowground biodiversity. 
    more » « less
  4. Abstract Structural diversity—the volume and physical arrangement of vegetation within the three‐dimensional (3D) space of ecosystems—is a predictor of ecosystem function that can be measured at large scales with remote sensing. However, the landscape composition and configuration of structural diversity across macrosystems have not been well described. Using a relatively recently developed method to quantify landscape composition and configuration of continuous habitat or terrain, we propose the application of gradient surface metrics (GSMs) to quantify landscape patterns of structural diversity and provide insights into how its spatial pattern relates to ecosystem function. We first applied an example set of GSMs that represent landscape heterogeneity, dominance, and edge density to Lidar‐derived structural diversity within 28 forested landscapes at National Ecological Observatory Network (NEON) sites. Second, we tested for forest type, geographic location, and climate drivers of macroscale variation in GSMs of structural diversity (GSM‐SD). Third, we demonstrated the utility of these metrics for understanding spatial patterns of ecosystem function in a case study with NDVI, a proxy of productivity. We found that GSM‐SD varied in landscapes within macrosystems, with forest type, geographic location, and climate being significantly related to some but not all metrics. We also found that dominance of high peaks of height and vertical complexity of canopy vegetation and the heterogeneity of the vertical complexity and coefficient of variation of canopy vegetation height within 120‐m patches were negatively correlated with NDVI across the 28 NEON sites. However, forest type always had a significant interaction term between these GSM‐SD and NDVI relationships. Our study demonstrates that GSMs are useful to describe the landscape composition and configuration of structural diversity and its relationship with productivity that warrants further consideration for spatially motivated management decisions. 
    more » « less
  5. Abstract Understanding the determinants of urban forest diversity and structure is important for preserving biodiversity and sustaining ecosystem services in cities. However, comprehensive field assessments are resource‐intensive, and landscape‐level approaches may overlook heterogeneity within urban regions. To address this challenge, we combined remote sensing with field inventories to comprehensively map and analyze urban forest attributes in forest patches across the Minneapolis‐St. Paul Metropolitan Area (MSPMA) in a multistep process. First, we developed predictive machine learning models of forest attributes by integrating data from forest inventories (from 40 12.5‐m‐radius plots) with Global Ecosystem Dynamics Investigation (GEDI) observations and Sentinel‐2‐derived land surface phenology (LSP). These models enabled accurate predictions of forest attributes, specifically nine metrics of plant diversity (tree species richness, tree abundance, and understory plant abundance), structure (average canopy height, dbh, and canopy density), and structural complexity (variability in canopy height, dbh, and canopy density) with relative errors ranging between 11% and 21%. Second, we applied these machine learning models to predict diversity metrics for 804 additional plots from GEDI and Sentinel‐2. Finally, we applied Bayesian multilevel models to the predicted diversity metrics to assess the influence of multiple factors—patch dimensions, landscape attributes, plot position, and jurisdictional agency—on these forest attributes across the 804 predicted plots. The models showed all predictors have some degree of effect on forest attributes, presenting varying explanatory power withR2values ranging from 0.071 to 0.405. Overall, plot characteristics (e.g., distance to nearest trail, proximity to forest edge) and jurisdictional agency explained a large portion of the variability across patches, whereas patch and landscape characteristics did not. The relative effect of plot versus management sets of predictors on the marginal ΔR2was heterogeneous across metrics and ecological subsections (an ecological classification designation). The multiplicity of determinants influencing urban forests emphasizes the intricate nature of urban ecosystems and highlights nuanced, heterogeneous relationships between urban ecological and anthropogenic factors that determine forest properties. Effectively enhancing biodiversity in urban forests requires assessments, management, and conservation strategies tailored for context‐specific characteristics. 
    more » « less