skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 11, 2026

Title: Climate mitigation potential for targeted forestation after considering climate change, fires, and albedo
Afforestation and reforestation, both of which refer to forestation strategies, are widely promoted as key tools to mitigate anthropogenic warming. However, the carbon sequestration potential of these efforts remains uncertain in satellite-based assessments, particularly when accounting for dynamic climate conditions, vegetation-climate feedback, fire-dominated disturbance, and the trade-offs associated with surface albedo changes. Leveraging a coupled Earth system model, we estimated that global forestation mitigates 31.3 to 69.2 Pg Ceq(carbon equivalent) during 2021–2100 under a sustainable shared socioeconomic pathway. Regionally, the highest carbon mitigation potential of forestation concentrates in tropical areas, while mid-high-latitude regions demonstrate higher heterogeneity, highlighting the need for region-specific strategies and further refinement of nature-based mitigation plans. Our findings underscore the importance of considering disturbances and minimizing adverse albedo changes when estimating the carbon mitigation potential of forestation initiatives. We also advocate for the development of consistent, high-resolution maps of suitable areas for targeted forestation, avoiding environmentally sensitive lands and potential conflicts with other human activities.  more » « less
Award ID(s):
2021898 2306198
PAR ID:
10589858
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science
Date Published:
Journal Name:
Science Advances
Volume:
11
Issue:
15
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract No-till management is often recognized for its environmental and economic benefits, but its potential to reduce climate warming is still uncertain. Beyond ongoing debate over its effects on soil carbon storage, no-till also leaves plant residue on the surface, which can reflect more sunlight. This increase in surface reflectivity, called albedo, may help mitigate climate change by reducing the energy absorbed by the land. Here, we assessed this climate benefit of no-till across the U.S. Corn Belt using conservation survey records, county-level tillage data, and satellite observations. We found that no-till increased land surface brightness during the dormant season, reducing absorbed solar energy by an estimated 50 grams of CO2equivalent per square meter per year. Regionally, this could add up to 24 teragrams of CO2equivalent per year in potential climate benefits. Areas with low adoption, especially those with dark, carbon-rich soils, offer the greatest opportunity for further mitigation. 
    more » « less
  2. ABSTRACT Carbon dioxide removal technologies such as bioenergy with carbon capture and storage (BECCS) are required if the effects of climate change are to be reversed over the next century. However, BECCS demands extensive land use change that may create positive or negative radiative forcing impacts upstream of the BECCS facility through changes to in situ greenhouse gas fluxes and land surface albedo. When quantifying these upstream climate impacts, even at a single site, different methods can give different estimates. Here we show how three common methods for estimating the net ecosystem carbon balance of bioenergy crops established on former grassland or former cropland can differ in their central estimates and uncertainty. We place these net ecosystem carbon balance forcings in the context of associated radiative forcings from changes to soil N2O and CH4fluxes, land surface albedo, embedded fossil fuel use, and geologically stored carbon. Results from long term eddy covariance measurements, a soil and plant carbon inventory, and the MEMS 2 process‐based ecosystem model all agree that establishing perennials such as switchgrass or mixed prairie on former cropland resulted in net negative radiative forcing (i.e., global cooling) of −26.5 to −39.6 fW m−2over 100 years. Establishing these perennials on former grassland sites had similar climate mitigation impacts of −19.3 to −42.5 fW m−2. However, the largest climate mitigation came from establishing corn for BECCS on former cropland or grassland, with radiative forcings from −38.4 to −50.5 fW m−2, due to its higher plant productivity and therefore more geologically stored carbon. Our results highlight the strengths and limitations of each method for quantifying the field scale climate impacts of BECCS and show that utilizing multiple methods can increase confidence in the final radiative forcing estimates. 
    more » « less
  3. Abstract Increasing the albedo of urban surfaces, through strategies like white roof installations, has emerged as a promising approach for urban climate adaptation. Yet, modeling these strategies on a large scale is limited by the use of static urban surface albedo representations in the Earth system models. In this study, we developed a new transient urban surface albedo scheme in the Community Earth System Model and evaluated evolving adaptation strategies under varying urban surface albedo configurations. Our simulations model a gradual increase in the urban surface albedo of roofs, impervious roads, and walls from 2015 to 2099 under the SSP3‐7.0 scenario. Results highlight the cooling effects of roof albedo modifications, which reduce the annual‐mean canopy urban heat island intensity from 0.8°C in 2015 to 0.2°C by 2099. Compared to high‐density and medium‐density urban areas, higher albedo configurations are more effective in cooling environments within tall building districts. Additionally, urban surface albedo changes lead to changes in building energy consumption, where high albedo results in more indoor heating usage in urban areas located beyond 30°N and 25°S. This scheme offers potential applications like simulating natural albedo variations across urban surfaces and enables the inclusion of other urban parameters, such as surface emissivity. 
    more » « less
  4. Abstract Global climate changes, especially the rise of global mean temperature due to the increased carbon dioxide (CO2) concentration, can, in turn, result in higher anthropogenic and biogenic greenhouse gas emissions. This potentially leads to a positive loop of climate–carbon feedback in the Earth’s climate system, which calls for sustainable environmental strategies that can mitigate both heat and carbon emissions, such as urban greening. In this study, we investigate the impact of urban irrigation over green spaces on ambient temperatures and CO2exchange across major cities in the contiguous United States. Our modeling results indicate that the carbon release from urban ecosystem respiration is reduced by evaporative cooling in humid climate, but promoted in arid/semi-arid regions due to increased soil moisture. The irrigation-induced environmental co-benefit in heat and carbon mitigation is, in general, positively correlated with urban greening fraction and has the potential to help counteract climate–carbon feedback in the built environment. 
    more » « less
  5. Abstract The Latin America and the Caribbean (LAC) region plays key roles in both meeting global agricultural demands and maintaining carbon sinks due to its abundant land and water resources. In this study we use the Global Change Analysis Model to evaluate the opportunities and challenges posed by two global‐scale drivers: agricultural market integration (i.e., reduction of trade barriers) and land‐based climate mitigation policy. We evaluate their potential individual and combined impacts on agricultural production and trade revenues across LAC's economies through mid‐century, as well as the resulting impacts on agricultural consumers and integrated land‐water‐climate systems across LAC's diverse sub‐regions. Increased global market integration results in increased agricultural production and trade revenues for many LAC economies, driven by their evolving comparative advantages. Climate mitigation measures on CO2and non‐CO2greenhouse gases increase revenues due to increased agricultural prices from land competition and emissions abatement. The combined outcomes from both drivers are complex and sometimes non‐linear, highlighting the importance of understanding the interactions between multiple drivers. Our results show that increased agricultural production and trade opportunities, from either of the two drivers, pose significant trade‐offs that require careful multi‐sectoral planning, such as emissions reduction challenges, potential loss of livestock production when pursuing land‐based climate mitigation strategies, increased consumer expenditures, and changes in land‐use or water withdrawals, resulting in deforestation or water scarcity pressures. There is considerable heterogeneity in economic and environmental outcomes across LAC sub‐regions and agricultural commodities, illustrating the value of considering outcomes at finer scales. 
    more » « less