skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid migration of Mongolian oak into the southern Asian boreal forest
Abstract The migration of trees induced by climatic warming has been observed at many alpine treelines and boreal–tundra ecotones, but the migration of temperate trees into southern boreal forest remains less well documented. We conducted a field investigation across an ecotone of temperate and boreal forests in northern Greater Khingan Mountains of northeast China. Our analysis demonstrates that Mongolian oak (Quercus mongolica), an important temperate tree species, has migrated rapidly into southern boreal forest in synchrony with significant climatic warming over the past century. The average rate of migration is estimated to be 12.0 ± 1.0 km decade−1, being slightly slower than the movement of isotherms (14.7 ± 6.4 km decade−1). The migration rate of Mongolian oak is the highest observed among migratory temperate trees (average rate 4.0 ± 1.0 km decade−1) and significantly higher than the rates of tree migration at boreal–tundra ecotones (0.9 ± 0.4 km decade−1) and alpine treelines (0.004 ± 0.003 km decade−1). Compared with the coexisting dominant boreal tree species, Dahurian larch (Larix gmelinii), temperate Mongolian oak is observed to have significantly lower capacity for light acquisition, comparable water‐use efficiency but stronger capacity to utilize nutrients especially the most limiting nutrient, nitrogen. In the context of climatic warming, and in addition to a high seed dispersal capacity and potential thermal niche differences, the advantage of nutrient utilization, reflected by foliar elementomes and stable nitrogen isotope ratios, is also likely a key mechanism for Mongolian oak to coexist with Dahurian larch and facilitate its migration toward boreal forest. These findings highlight a rapid deborealization of southern Asian boreal forest in response to climatic warming.  more » « less
Award ID(s):
2021898
PAR ID:
10589864
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Global Change Biology
Volume:
30
Issue:
1
ISSN:
1354-1013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract AimAlpine treeline ecotones are influenced by environmental drivers and are anticipated to shift their locations in response to changing climate. Our goal was to determine the extent of recent climate‐induced treeline advance in the northeastern United States, and we hypothesized that treelines have advanced upslope in complex ways depending on treeline structure and environmental conditions. LocationWhite Mountain National Forest (New Hampshire) and Baxter State Park (Maine), USA. TaxonHigh‐elevation tree species—Abies balsamea, Picea marianaandBetula cordata. MethodsWe compared current and historical high‐resolution aerial imagery to quantify the advance of treelines over the last four decades, and link treeline changes to treeline form (demography) and environmental drivers. Spatial analyses of the aerial images were coupled with ground surveys of forest vegetation and topographical features to ground‐truth treeline classification and provide information on treeline demography and additional potential drivers of treeline locations. We used multiple linear regression models to examine the importance of both topographic and climatic variables on treeline advance. ResultsRegional treelines have significantly shifted upslope over the past several decades (on average by 3 m/decade). Gradual diffuse treelines (characterized by declining tree density) showed significantly greater upslope shifts (5 m/decade) compared to other treeline forms, suggesting that both climate warming and treeline demography are important correlates of treeline shifts. Topographical features (slope, aspect) as well as climate (accumulated growing degree days, AGDD) explained significant variation in the magnitude of treeline advance (R2 = 0.32). Main ConclusionsThe observed advance of treelines is consistent with the hypothesis that climate warming induces upslope treeline shifts. Overall, our findings suggest that gradual diffuse treelines at high elevations may be indicative of climate warming more than other alpine treeline ecotones and thus they can inform us about past and ongoing climatic changes. 
    more » « less
  2. Abstract Unprecedented modern rates of warming are expected to advance boreal forest into Arctic tundra 1 , thereby reducing albedo 2–4 , altering carbon cycling 4 and further changing climate 1–4 , yet the patterns and processes of this biome shift remain unclear 5 . Climate warming, required for previous boreal advances 6–17 , is not sufficient by itself for modern range expansion of conifers forming forest–tundra ecotones 5,12–15,17–20 . No high-latitude population of conifers, the dominant North American Arctic treeline taxon, has previously been documented 5 advancing at rates following the last glacial maximum (LGM) 6–8 . Here we describe a population of white spruce ( Picea glauca ) advancing at post-LGM rates 7 across an Arctic basin distant from established treelines and provide evidence of mechanisms sustaining the advance. The population doubles each decade, with exponential radial growth in the main stems of individual trees correlating positively with July air temperature. Lateral branches in adults and terminal leaders in large juveniles grow almost twice as fast as those at established treelines. We conclude that surpassing temperature thresholds 1,6–17 , together with winter winds facilitating long-distance dispersal, deeper snowpack and increased soil nutrient availability promoting recruitment and growth, provides sufficient conditions for boreal forest advance. These observations enable forecast modelling with important insights into the environmental conditions converting tundra into forest. 
    more » « less
  3. Unprecedented modern rates of warming are expected to advance boreal forest into Arctic tundra, thereby reducing albedo, altering C-cycling (carbon-cycling), and changing global climate, yet the patterns and processes of this biome shift remain unclear. We describe the 20th century colonization of an Arctic basin by a widespread boreal conifer, Picea glauca, 40 km (kilometer) north of the nearest established treelines. The population approximately doubled each decade, with radial growth in main stems increasing exponentially and correlating positively to July air temperature. Juvenile height and adult lateral growth were 90% faster than at established treelines. This climate-forced range expansion, cast in the context of invasion theory, informs forecast models of vegetation change with the ecological conditions driving this biome shift. While surpassing temperature thresholds is a necessary condition for boreal forest advance, our empirical results indicate high soil nutrient availability, deep snow, and winter winds facilitate long-distance dispersal and promote recruitment. 
    more » « less
  4. Northeastern US temperate forests are currently net carbon (C) sinks and play an important role offsetting anthropogenic C emissions, but projected climatic changes, including increased temperatures and decreased winter snowpack, may influence this C sink over the next century. Past studies show that growing season warming increases forest C storage through greater soil nutrient availability that contributes to greater rates of net photosynthesis, while reduced winter snowpack induces soil freeze/thaw cycles that reduce tree root vitality, nutrient uptake, and forest C storage. The year-round effects of climate change on this C sink are not well understood. We report here decade-long results from the Climate Change Across Seasons Experiment (CCASE) at the Hubbard Brook Experimental Forest, which determines the combined effects of growing season warming and a smaller winter snowpack on C storage in northern temperate forests. We found after a decade of treatments that growing season warming increases cumulative tree stem biomass C by 63%. However, winter soil freeze/thaw cycles offset half of this growing season warming effect. The amount of C stored in stem biomass of trees experiencing both growing season warming plus smaller winter snowpack is only 31% higher than the reference plots, but this difference is not significant. Our results suggest that current Earth system models are likely to overestimate the C sink capacity of northern temperate forests because they do not incorporate the negative impacts of a shrinking snowpack and increased frequency of soil freeze/thaw cycles on C uptake and storage by trees. 
    more » « less
  5. The interaction networks formed by ectomycorrhizal fungi (EMF) and their tree hosts, which are important to both forest recruitment and ecosystem carbon and nutrient retention, may be particularly susceptible to climate change at the boreal–temperate forest ecotone where environmental conditions are changing rapidly. Here, we quantified the compositional and functional trait responses of EMF communities and their interaction networks with two boreal (Pinus banksianaandBetula papyrifera) and two temperate (Pinus strobusandQuercus macrocarpa) hosts to a factorial combination of experimentally elevated temperatures and reduced rainfall in a long-term open-air field experiment. The study was conducted at the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment in Minnesota, USA, where infrared lamps and buried heating cables elevate temperatures (ambient, +3.1 °C) and rain-out shelters reduce growing season precipitation (ambient, ~30% reduction). EMF communities were characterized and interaction networks inferred from metabarcoding of fungal-colonized root tips. Warming and rainfall reduction significantly altered EMF community composition, leading to an increase in the relative abundance of EMF with contact-short distance exploration types. These compositional changes, which likely limited the capacity for mycelial connections between trees, corresponded with shifts from highly redundant EMF interaction networks under ambient conditions to less redundant (more specialized) networks. Further, the observed changes in EMF communities and interaction networks were correlated with changes in soil moisture and host photosynthesis. Collectively, these results indicate that the projected changes in climate will likely lead to significant shifts in the traits, structure, and integrity of EMF communities as well as their interaction networks in forest ecosystems at the boreal–temperate ecotone. 
    more » « less