- PAR ID:
- 10417104
- Date Published:
- Journal Name:
- Nature
- Volume:
- 608
- Issue:
- 7923
- ISSN:
- 0028-0836
- Page Range / eLocation ID:
- 546 to 551
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Unprecedented modern rates of warming are expected to advance boreal forest into Arctic tundra, thereby reducing albedo, altering C-cycling (carbon-cycling), and changing global climate, yet the patterns and processes of this biome shift remain unclear. We describe the 20th century colonization of an Arctic basin by a widespread boreal conifer, Picea glauca, 40 km (kilometer) north of the nearest established treelines. The population approximately doubled each decade, with radial growth in main stems increasing exponentially and correlating positively to July air temperature. Juvenile height and adult lateral growth were 90% faster than at established treelines. This climate-forced range expansion, cast in the context of invasion theory, informs forecast models of vegetation change with the ecological conditions driving this biome shift. While surpassing temperature thresholds is a necessary condition for boreal forest advance, our empirical results indicate high soil nutrient availability, deep snow, and winter winds facilitate long-distance dispersal and promote recruitment.more » « less
-
Understanding the key mechanisms that control northern treelines is important to accurately predict biome shifts and terrestrial feedbacks to climate. At a global scale, it has long been observed that elevational and latitudinal treelines occur at similar mean growing season air temperature (GSAT) isotherms, inspiring the growth limitation hypothesis (GLH) that cold GSAT limits aboveground growth of treeline trees, with mean treeline GSAT ~6-7 degrees celsius (°C). Treelines with mean GSAT warmer than 6-7 °C may indicate other limiting factors. Many treelines globally are not advancing despite warming, and other climate variables are rarely considered at broad scales. Our goals were to test whether current boreal treelines in northern Alaska correspond with the GLH isotherm, determine which environmental factors are most predictive of treeline presence, and to identify areas beyond the current treeline where advance is most likely. We digitized ~12,400 kilometers (km) of treelines (greater than 26K points) and computed seasonal climate variables across northern Alaska. We then built a generalized additive model predicting treeline presence to identify key factors determining treeline. Two metrics of mean GSAT at Alaska’s northern treelines were consistently warmer than the 6-7 °C isotherm (means of 8.5 °C and 9.3 °C), indicating that direct physiological limitation from low GSAT is unlikely to explain the position of treelines in northern Alaska. Our final model included cumulative growing degree-days, near-surface (≤ 1 meters (m)) permafrost probability, and growing season total precipitation, which together may represent the importance of soil temperature. Our results indicate that mean GSAT may not be the primary driver of treeline in northern Alaska or that its effect is mediated by other more proximate, and possibly non-climatic, controls. Our model predicts treeline potential in several areas beyond current treelines, pointing to possible routes of treeline advance if unconstrained by non-climatic factors.more » « less
-
Understanding the key mechanisms that control northern treelines is important to accurately predict biome shifts and terrestrial feedbacks to climate. At a global scale, it has long been observed that elevational and latitudinal treelines occur at similar mean growing season air temperature (GSAT) isotherms, inspiring the growth limitation hypothesis (GLH) that cold GSAT limits aboveground growth of treeline trees, with mean treeline GSAT ~6-7 degrees celsius (°C). Treelines with mean GSAT warmer than 6-7 °C may indicate other limiting factors. Many treelines globally are not advancing despite warming, and other climate variables are rarely considered at broad scales. Our goals were to test whether current boreal treelines in northern Alaska correspond with the GLH isotherm, determine which environmental factors are most predictive of treeline presence, and to identify areas beyond the current treeline where advance is most likely. We digitized ~12,400 kilometers (km) of treelines (greater than 26K (26,000) points) and computed seasonal climate variables across northern Alaska. We then built a generalized additive model predicting treeline presence to identify key factors determining treeline. Two metrics of mean GSAT at Alaska’s northern treelines were consistently warmer than the 6-7 °C isotherm (means of 8.5 °C and 9.3 °C), indicating that direct physiological limitation from low GSAT is unlikely to explain the position of treelines in northern Alaska. Our final model included cumulative growing degree-days, near-surface (≤ 1 meters (m)) permafrost probability, and growing season total precipitation, which together may represent the importance of soil temperature. Our results indicate that mean GSAT may not be the primary driver of treeline in northern Alaska or that its effect is mediated by other more proximate, and possibly non-climatic, controls. Our model predicts treeline potential in several areas beyond current treelines, pointing to possible routes of treeline advance if unconstrained by non-climatic factors.more » « less
-
Abstract Recent climate warming and scenarios for further warming have led to expectations of rapid movement of ecological boundaries. Here we focus on the circumarctic forest–tundra ecotone (FTE), which represents an important bioclimatic zone with feedbacks from forest advance and corresponding tundra disappearance (up to 50% loss predicted this century) driving widespread ecological and climatic changes. We address FTE advance and climate history relations over the 20th century, using FTE response data from 151 sites across the circumarctic area and site‐specific climate data. Specifically, we investigate spatial uniformity of FTE advance, statistical associations with 20th century climate trends, and whether advance rates match climate change velocities (CCVs). Study sites diverged into four regions (Eastern Canada; Central and Western Canada and Alaska; Siberia; and Western Eurasia) based on their climate history, although all were characterized by similar qualitative patterns of behaviour (with about half of the sites showing advancing behaviour). The main associations between climate trend variables and behaviour indicate the importance of precipitation rather than temperature for both qualitative and quantitative behaviours, and the importance of non‐growing season as well as growing season months. Poleward latitudinal advance rates differed significantly among regions, being smallest in Eastern Canada (~10 m/year) and largest in Western Eurasia (~100 m/year). These rates were 1–2 orders of magnitude smaller than expected if vegetation distribution remained in equilibrium with climate. The many biotic and abiotic factors influencing FTE behaviour make poleward advance rates matching predicted 21st century CCVs (~103–104 m/year) unlikely. The lack of empirical evidence for swift forest relocation and the discrepancy between CCV and FTE response contradict equilibrium model‐based assumptions and warrant caution when assessing global‐change‐related biotic and abiotic implications, including land–atmosphere feedbacks and carbon sequestration.
-
null (Ed.)The transition zone between the northern boreal forest and the arctic tundra, known as the tundra-taiga ecotone (TTE) has undergone rapid warming in recent decades. In response to this warming, tree density, growth, and stand productivity are expected to increase. Increases in tree density have the potential to negate the positive impacts of warming on tree growth through a reduction in the active layer and an increase in competitive interactions. We assessed the effects of tree density on tree growth and climate-growth responses of Cajander larch (Larix cajanderi) and on trends in the normalized difference vegetation index (NDVI) in the TTE of Northeast Siberia. We examined 19 mature forest stands that all established after a fire in 1940 and ranged in tree density from 300 to 37,000 stems ha-1. High density stands with shallow active layers had lower tree growth, higher stand productivity, and more negative growth responses to growing season temperatures compared to low density stands with deep active layers. Variation in stand productivity across the density gradient was not captured by Landsat derived NDVI, but NDVI did capture annual variations in stand productivity. Our results suggest that the expected increases in tree density following fires at the TTE may effectively limit tree growth and that NDVI is unlikely to capture increasing productivity associated with changes in tree density.more » « less