There are few studies focused on spore and pollen clumps in paleopalynological samples, and these are only reports from the Northern Hemisphere. These aggregates may be of animal or floral origin. The goal of this contribution is to provide the first detailed study of spore and pollen clumps from the Southern Hemisphere, and to discuss their possible origin, botanical affinities, and pollination modes, based on their morphological characteristics, preservation and comparison with putative living representatives. Three fern spore clumps and 18 angiosperm pollen clumps were recognized in Maastrichtian-Danian La Colonia Formation sediments that outcrop at Chubut Province, Patagonia, Argentina. Most clumps are monospecific and composed of undamaged elements but some of them have two types of spore/pollen with corroded and/or fragmented exines. These findings represent the most diverse and abundant record of fern and angiosperm clumps from the Late Cretaceous and early Paleocene so far known from South America and the Southern Hemisphere. These results are indicative of the need for comprehensive large-scale studies on pollination of modern taxa and careful processing of palynological samples to lessen the already large bias in paleopalynological interpretations. The paucity of information on clumps in the fossil record has impaired our comprehension of dispersion/pollination in deep time.
more »
« less
Spores from the K–Pg boundary of the La Colonia Formation, Patagonia, Argentina
A palynological study was carried out based on 157 samples collected from four representative stratigraphic sections of the Maastrichtian-Danian deposits of the La Colonia Formation outcropping in northern Chubut Province, Patagonia, Argentina. About 240 palynomorphs were recognized. Plant communities were dominated in terms of richness by ferns and angiosperms, but algae and gymnosperms are also well-represented. In this contribution, we present the systematic study of bryophyte, lycophyte, and fern spores. Bryophytes comprise eight species (10% of spore diversity), including representatives of Marchantiophyta, Bryophyta, and Anthocerotophyta. Lycophytes encompass 15 species (20% of spore diversity) and are represented by the families Lycopodiaceae and Selaginellaceae. Ferns comprise 53 species (70% of spore diversity), including members of Anemiaceae, Dicksoniaceae, Dipteridaceae, Gleicheniaceae, Lygodiaceae, Marsileaceae, Matoniaceae, Osmundaceae, Polypodiaceae, Salviniaceae, and Schizaeaceae, among others of uncertain affinities. Four new species are erected: a lycophyte (Neoraistrickia loconiensis sp. nov.), a salvinialean (Thecaspora polygonalis sp. nov.), and two fern species of unknown affinities (Clavatosporis varians sp. nov. and Microreticulatisporites patagonicus sp. nov.). The recorded palynoflora reinforces previous environmental interpretation of the La Colonia deposits as coastal plains bathed by shallow seas and barrier island/lagoon complexes and the presence of freshwater bodies where aquatic plant communities developed. The vegetational history of the bryophytes, lycophytes, and ferns in the studied sections of the La Colonia Formation indicates the lack of a significant floristic change across the K–Pg interval at the local scale.
more »
« less
- PAR ID:
- 10589911
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Review of Palaeobotany and Palynology
- Volume:
- 328
- ISSN:
- 0034-6667
- Page Range / eLocation ID:
- 105159
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A growing interest in fungi that occur within symptom-less plants and lichens (endophytes) has uncovered previously uncharacterized species in diverse biomes worldwide. In many temperate and boreal forests, endophytic Coniochaeta (Sacc.) Cooke ( Coniochaetaceae , Coniochaetales, Sordariomycetes , Ascomycota ) are commonly isolated on standard media, but rarely are characterized. We examined 26 isolates of Coniochaeta housed at the Gilbertson Mycological Herbarium. The isolates were collected from healthy photosynthetic tissues of conifers, angiosperms, mosses and lichens in Canada, Sweden and the United States. Their barcode sequences (nuclear ribosomal internal transcribed spacer and 5.8S; ITS rDNA) were ≤97% similar to any documented species available through GenBank. Phylogenetic analyses based on two loci (ITS rDNA and translation elongation factor 1-alpha) indicated that two isolates represented Coniochaeta cymbiformispora , broadening the ecological niche and geographic range of a species known previously from burned soil in Japan. The remaining 24 endophytes represented three previously undescribed species that we characterize here: Coniochaeta elegans sp. nov., Coniochaeta montana sp. nov. and Coniochaeta nivea sp. nov. Each has a wide host range, including lichens, bryophytes and vascular plants. C. elegans sp. nov. and C. nivea sp. nov. have wide geographic ranges. C. montana sp. nov. occurs in the Madrean biome of Arizona (USA), where it is sympatric with the other species described here. All three species display protease, chitinase and cellulase activity in vitro . Overall, this study provides insight into the ecological and evolutionary diversity of Coniochaeta and suggests that these strains may be amenable for studies of traits relevant to a horizontally transmitted, symbiotic lifestyle.more » « less
-
PremiseUndoubtedly, fossils are critical for understanding evolutionary transformations in deep time. Here, we reinvestigate the microspores and megaspores ofPaleoazolla patagonica, a water fern found in Late Cretaceous sediments of the Chubut Province, Patagonia, Argentina, which provides novel evidence on the past history of the water fern clade. The study was based on recently collected specimens and additional observations of the original material. MethodsMost specimens analyzed herein were obtained from new palynological samples collected at the Cerro Bosta and Cañadón del Irupé localities, La Colonia Formation. Samples were mechanically disaggregated and treated with hydrofluoric and hydrochloric acid. Spores were studied using standard light microscopy and scanning electron microscopy. We also reexamined the original materials. ResultsThe newly described characters ofPaleoazollainclude the presence of heterosporangiate sori composed of one ellipsoidal megasporangium surrounded by three to four oval microsporangia, megasporangium containing one hairy massula that encloses two trilete megaspores (rarely one or three), and microsporangia containing numerous microspore massulae with non‐septate multibarbed glochidia and one trilete microspore per massula. ConclusionsThe reinterpretation has revealed a novel set of characters for understanding the evolution of heterosporous water ferns. The presence of two megaspores in the megasporangium ofPaleoazollaexposes serious gaps in the current knowledge on the evolution of monomegaspory in heterosporous water ferns, a fact that emphasizes the need of including fossils within phylogenies to elucidate patterns of character acquisition among water ferns.more » « less
-
Abstract Zinc finger (Zf)-BED proteins are a novel superfamily of transcription factors that controls numerous activities in plants including growth, development, and cellular responses to biotic and abiotic stresses. Despite their important roles in gene regulation, little is known about the specific functions of Zf-BEDs in land plants. The current study identified a total of 750 Zf-BED-encoding genes in 35 land plant species including mosses, bryophytes, lycophytes, gymnosperms, and angiosperms. The gene family size was somewhat proportional to genome size. All identified genes were categorized into 22 classes based on their specific domain architectures. Of these, class I (Zf-BED_DUF-domain_Dimer_Tnp_hAT) was the most common in the majority of the land plants. However, some classes were family-specific, while the others were species-specific, demonstrating diversity at different classification levels. In addition, several novel functional domains were also predicated including WRKY and nucleotide-binding site (NBS). Comparative genomics, transcriptomics, and proteomics provided insights into the evolutionary history, duplication, divergence, gene gain and loss, species relationship, expression profiling, and structural diversity of Zf-BEDs in land plants. The comprehensive study of Zf-BEDs inGossypiumsp., (cotton) also demonstrated a clear footprint of polyploidization. Overall, this comprehensive evolutionary study of Zf-BEDs in land plants highlighted significant diversity among plant species.more » « less
-
Ferns are the second largest clade of vascular plants with over 10,000 species, yet the generation of genomic resources for the group has lagged behind other major clades of plants. Transcriptomic data have proven to be a powerful tool to assess phylogenetic relationships, using thousands of markers that are largely conserved across the genome, and without the need to sequence entire genomes. We assembled the largest nuclear phylogenetic dataset for ferns to date, including 2884 single-copy nuclear loci from 247 transcriptomes (242 ferns, five outgroups), and investigated phylogenetic relationships across the fern tree, the placement of whole genome duplications (WGDs), and gene retention patterns following WGDs. We generated a well-supported phylogeny of ferns and identified several regions of the fern phylogeny that demonstrate high levels of gene tree–species tree conflict, which largely correspond to areas of the phylogeny that have been difficult to resolve. Using a combination of approaches, we identified 27 WGDs across the phylogeny, including 18 large-scale events (involving more than one sampled taxon) and nine small-scale events (involving only one sampled taxon). Most inferred WGDs occur within single lineages (e.g., orders, families) rather than on the backbone of the phylogeny, although two inferred events are shared by leptosporangiate ferns (excluding Osmundales) and Polypodiales (excluding Lindsaeineae and Saccolomatineae), clades which correspond to the majority of fern diversity. We further examined how retained duplicates following WGDs compared across independent events and found that functions of retained genes were largely convergent, with processes involved in binding, responses to stimuli, and certain organelles over-represented in paralogs while processes involved in transport, organelles derived from endosymbiotic events, and signaling were under-represented. To date, our study is the most comprehensive investigation of the nuclear fern phylogeny, though several avenues for future research remain unexplored.more » « less
An official website of the United States government

