skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thrust generation by shark denticles
Direct numerical simulation is performed for flow separation over a bump in a turbulent channel. Comparisons are made between a smooth bump and one where the lee side is covered with replicas of shark denticles – dermal scales that consist of a slender base (the neck) and a wide top (the crown). As flow over the bump is under an adverse pressure gradient (APG), a reverse pore flow is formed in the porous cavity region underneath the crowns of the denticle array. Remarkable thrust is generated by the reverse pore flow as denticle necks accelerate the fluid passing between them in the upstream direction. Several geometrical features of shark denticles, including some that had not previously been considered hydrodynamically functional, are identified to form the two-layer denticle structure that enables and sustains the reverse pore flow and thrust generation. The reverse pore flow is activated by the APG before massive flow detachment. The results indicate a proactive, on-demand drag reduction mechanism that leverages and transforms the APG into a favourable outcome.  more » « less
Award ID(s):
2131942
PAR ID:
10589949
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
1000
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Shark skin denticles (scales) are diverse in morphology both among species and across the body of single individuals, although the function of this diversity is poorly understood. The extremely elongate and highly flexible tail of thresher sharks provides an opportunity to characterize gradients in denticle surface characteristics along the length of the tail and assess correlations between denticle morphology and tail kinematics. We measured denticle morphology on the caudal fin of three mature and two embryo common thresher sharks (Alopias vulpinus), and we compared thresher tail denticles to those of eleven other shark species. Using surface profilometry, we quantified 3D‐denticle patterning and texture along the tail of threshers (27 regions in adults, and 16 regions in embryos). We report that tails of thresher embryos have a membrane that covers the denticles and reduces surface roughness. In mature thresher tails, surfaces have an average roughness of 5.6 μm which is smoother than some other pelagic shark species, but similar in roughness to blacktip, porbeagle, and bonnethead shark tails. There is no gradient down the tail in roughness for the middle or trailing edge regions and hence no correlation with kinematic amplitude or inferred magnitude of flow separation along the tail during locomotion. Along the length of the tail there is a leading‐to‐trailing‐edge gradient with larger leading edge denticles that lack ridges (average roughness = 9.6 μm), and smaller trailing edge denticles with 5 ridges (average roughness = 5.7 μm). Thresher shark tails have many missing denticles visible as gaps in the surface, and we present evidence that these denticles are being replaced by new denticles that emerge from the skin below. 
    more » « less
  2. Synopsis Shark skin is covered in dermal denticles—tooth-like structures consisting of enameloid, dentine, and a central pulp cavity. Previous studies have demonstrated differences in denticle morphology both among species and across different body regions within a species, including one report of extreme morphological variation within a 1 cm distance on the skin covering the branchial pouches, a region termed “interbranchial skin.” We used gel-based profilometry, histology, and scanning electron microscopy to quantify differences in denticle morphology and surface topography of interbranchial skin denticles among 13 species of sharks to better understand the surface structure of this region. We show that (1) interbranchial skin denticles differ across shark species, and (2) denticles on the leading edge of the skin covering each gill pouch have different morphology and surface topography compared with denticles on the trailing edge. Across all species studied, there were significant differences in denticle length (P = 0.01) and width (P = 0.002), with shorter and wider leading edge denticles compared with trailing edge denticles. Surface skew was also higher in leading edge denticles (P = 0.009), though most values were still negative, indicating a surface texture more dominated by valleys than peaks. Overall, leading edge denticles were smoother-edged than trailing edge denticles in all of the species studied. These data suggest two hypotheses: (1) smoother-edged leading edge denticles protect the previous gill flap from abrasion during respiration, and (2) ridged denticle morphology at the trailing edge might alter water turbulence exiting branchial pouches after passing over the gills. Future studies will focus on determining the relationship between denticle morphology and water flow by visualizing fluid motion over interbranchial denticles during in vivo respiration. 
    more » « less
  3. Synopsis Shark skin is a composite of mineralized dermal denticles embedded in an internal collagen fiber network and is sexually dimorphic. Female shark skin is thicker, has greater denticle density and denticle overlap compared to male shark skin, and denticle morphology differs between sexes. The skin behaves with mechanical anisotropy, extending farther when tested along the longitudinal (anteroposterior) axis but increasing in stiffness along the hoop (dorsoventral or circumferential) axis. As a result, shark skin has been hypothesized to function as an exotendon. This study aims to quantify sex differences in the mechanical properties and morphology of shark skin. We tested skin from two immature male and two immature female sharks from three species (bonnethead shark, Sphyrna tiburo; bull shark, Carcharhinus leucas; silky shark, Carcharhinus falciformis) along two orientations (longitudinal and hoop) in uniaxial tension with an Instron E1000 at a 2 mm s−1 strain rate. We found that male shark skin was significantly tougher than female skin, although females had significantly greater skin thickness compared to males. We found skin in the hoop direction was significantly stiffer than the longitudinal direction across sexes and species, while skin in the longitudinal direction was significantly more extensible than in the hoop direction. We found that shark skin mechanical behavior was impacted by sex, species, and direction, and related to morphological features of the skin. 
    more » « less
  4. We develop a wall model for large-eddy simulation (LES) that takes into account various pressure-gradient effects using multi-agent reinforcement learning. The model is trained using low-Reynolds-number flow over periodic hills with agents distributed on the wall at various computational grid points. It utilizes a wall eddy-viscosity formulation as the boundary condition to apply the modeled wall shear stress. Each agent receives states based on local instantaneous flow quantities at an off-wall location, computes a reward based on the estimated wall-shear stress, and provides an action to update the wall eddy viscosity at each time step. The trained wall model is validated in wall-modeled LES of flow over periodic hills at higher Reynolds numbers, and the results show the effectiveness of the model on flow with pressure gradients. The analysis of the trained model indicates that the model is capable of distinguishing between the various pressure gradient regimes present in the flow. To further assess the robustness of the developed wall model, simulations of flow over the Boeing Gaussian bump are conducted at a Reynolds number of 2 million, based on the free-stream velocity and the bump width. The results of mean skin friction and pressure on the bump surface, as well as the velocity statistics of the flow field, are compared to those obtained from equilibrium wall model (EQWM) simulations and published experimental data sets. The developed wall model is found to successfully capture the acceleration and deceleration of the turbulent boundary layer on the bump surface, providing better predictions of skin friction near the bump peak and exhibiting comparable performance to the EQWM with respect to the wall pressure and velocity field. We also conclude that the subgrid-scale model is crucial to the accurate prediction of the flow field, in particular the prediction of separation. 
    more » « less
  5. Many species of fish gather in dense collectives or schools where there are significant flow interactions from their shed wakes. Commonly, these swimmers shed a classic reverse von Kármán wake, however, schooling eels produce a bifurcated wake topology with two vortex rings shed per oscillation cycle. To examine the schooling interactions of a hydrofoil with a bifurcated wake topology, we present tomographic particle image velocimetry (tomo PIV) measurements of the flow interactions and direct force measurements of the performance of two low-aspect-ratio hydrofoils ( A R = 0.5 ) in an in-line and a staggered arrangement. Surprisingly, when the leader and follower are interacting in either arrangement there are only minor alterations to the flowfields beyond the superposition of the flowfields produced by the isolated leader and follower. Motivated by this finding, Garrick’s linear theory, a linear unsteady hydrofoil theory based on a potential flow assumption, was adapted to predict the lift and thrust performance of the follower. Here, the follower hydrofoil interacting with the leader’s wake is considered as the superposition of an isolated pitching foil with a time-varying cross-stream velocity derived from the wake flow measurements of the isolated leader. Linear theory predictions accurately capture the time-averaged lift force and some of the major peaks in thrust derived from the follower interacting with the leader’s wake in a staggered arrangement. The thrust peaks that are not predicted by linear theory are likely driven by spatial variations in the flowfield acting on the follower or nonlinear flow interactions; neither of which are accounted for in the simple theory. This suggests that unsteady potential flow theory that does account for spatial variations in the flowfield acting on a hydrofoil can provide a relatively simple framework to understand and model the flow interactions that occur in schooling fish. Additionally, schooling eels can derive thrust and efficiency increases of 63-80% in either a in-line or a staggered arrangement where the follower is between two branched momentum jets or with one momentum jet branch directly impinging on it, respectively. 
    more » « less