skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Delineation of the impact on temporal behaviors of off-axis photoemission in an ultrafast electron microscope
Efforts to push the spatiotemporal imaging-resolution limits of femtosecond laser-driven ultrafast electron microscopes (UEMs) to the combined angstrom–fs range will benefit from stable sources capable of generating high bunch charges. Recent demonstrations of unconventional off-axis photoemitting geometries are promising, but connections to the observed onset of structural dynamics are yet to be established. Here we use the in-situ photoexcitation of coherent phonons to quantify the relative time-of-flight (r-TOF) of photoelectron packets generated from the Ni Wehnelt aperture and from a Ta cathode set-back from the aperture plane. We further support the UEM experiments with particle-tracing simulations of the precise electron-gun architecture and photoemitting geometries. In this way, we measure discernible shifts in electron-packet TOF of tens of picoseconds for the two photoemitting surfaces. These shifts arise from the impact that the Wehnelt-aperture off-axis orientation has on the electron-momentum distribution, which modifies both the collection efficiency and the temporal-packet distribution relative to on-axis emission. Future needs are identified; we expect this and other developments in UEM electron-gun configuration to expand the range of material phenomena that can be directly imaged on scales commensurate with fundamental structural dynamics.  more » « less
Award ID(s):
2011401
PAR ID:
10590016
Author(s) / Creator(s):
; ;
Publisher / Repository:
Rev. Sci. Instrum.
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
95
Issue:
9
ISSN:
0034-6748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Broader adoption of 4D ultrafast electron microscopy (UEM) for the study of chemical, materials, and quantum systems is being driven by development of new instruments as well as continuous improvement and characterization of existing technologies. Perhaps owing to the still‐high barrier to entry, the full range of capabilities of laser‐driven 4D UEM instruments has yet to be established, particularly when operated at extremely low beam currents (~fA). Accordingly, with an eye on beam stability, we have conducted particle tracing simulations of unconventional off‐axis photoemission geometries in a UEM equipped with a thermionic‐emission gun. Specifically, we have explored the impact of experimentally adjustable parameters on the time‐of‐flight (TOF), the collection efficiency (CE), and the temporal width of ultrashort photoelectron packets. The adjustable parameters include the Wehnelt aperture diameter (DW), the cathode set‐back position (Ztip), and the position of the femtosecond laser on the Wehnelt aperture surface relative to the optic axis (Rphoto). Notable findings include significant sensitivity of TOF toDWandZtip, as well as non‐intuitive responses of CE and temporal width to varyingRphoto. As a means to improve accessibility, practical implications and recommendations are emphasized wherever possible. 
    more » « less
  2. We tested and compared the stability and usability of three different cathode materials and configurations in a thermionic-based ultrafast electron microscope: (1) on-axis thermionic and photoemission from a custom 100 μm diameter LaB6 source with a graphite guard ring, (2) off-axis photoemission from the Ni aperture surface of the Wehnelt electrode, and (3) on-axis thermionic and photoemission from a custom 200 μm diameter polycrystalline Ta source. For each cathode type and configuration, including the Ni Wehnelt aperture, we illustrate how the photoelectron beam-current stability is deleteriously impacted by simultaneous cooling of the source following thermionic heating. Furthermore, we demonstrate usability via collection of parallel- and convergent-beam electron diffraction patterns and by formation of the optimum probe size. We find that usability of the off-axis Ni Wehnelt-aperture photoemission is at least comparable to on-axis LaB6 thermionic emission, as well as to on-axis photoemission [the heretofore conventional approach to ultrafast electron microscopy (UEM) in thermionic-based instruments]. However, the stability and achievable beam currents for off-axis photoemission from the Wehnelt aperture were superior to that of the other cathode types and configurations, regardless of the electron-emission mechanism. Beam-current stability for this configuration was found to be ±1% (one standard deviation from the mean) for 70 min (longest duration tested), and steady-state beam current was reached within the sampling-time resolution used here (∼1 s) for 15 pA beam currents (i.e., 460 electrons per packet for a 200 kHz repetition rate). Repeatability and robustness of the steady-state condition were also found to be within ±1% of the mean. We discuss the implications of these findings for UEM imaging and diffraction experiments, for pulsed-beam damage measurements, and for practical switching between optimum conventional TEM and UEM operation within the same instrument. 
    more » « less
  3. In femtosecond (fs) 4D ultrafast electron microscopy (UEM), a tradeoff is made between photoelectrons per packet and time resolution. One consequence of this can be longer-than-desirable acquisition times for low-density packets, and particularly for low repetition rates when complete photothermal dissipation is required. Thus, gaining an understanding of photoelectron trajectories in the gun region is important for identifying factors that limit collection efficiency (CE; fraction of photoelectrons that enter the illumination system). Here, we continue our work on the systematic study of photoelectron trajectories in the gun region of a Thermo Fisher/FEI Tecnai Femto UEM, focusing specifically on CE in the single-electron regime. Using General Particle Tracer, calculated field maps, and the exact architecture of the Tecnai Femto UEM, we simulated the effects of fs laser parameters and key gun elements on CE. The results indicate CE strongly depends upon the laser spot size on the source, the (unbiased) Wehnelt aperture diameter, and the incident photon energy. The CE dispersion with laser spot size is found to be strongly dependent on aperture diameter, being nearly dispersionless for the largest apertures. A gun crossover is also observed, with the beam-waist position being dependent on the aperture diameter, further illustrating that the Wehnelt aperture acts as a simple, fixed electrostatic lens in UEM mode. This work provides further insights into the operational aspects of fs 4D UEM. 
    more » « less
  4. Though efforts to improve the temporal resolution of transmission electron microscopes (TEMs) have waxed and waned for decades, with relatively recent advances routinely reaching sub-picosecond scales, fundamental and practical challenges have hindered the advance of combined Å–fs–meV resolutions, particularly for core-loss spectroscopy and real-space imaging. This is due in no small part to the complexity of the approach required to access timescales upon which electrons, atoms, molecules, and materials first begin to respond and transform – attoseconds to picoseconds. Here we present part of a larger effort devoted to systematically mapping the instrument parameter space of a TEM modified to reach ultrafast timescales. With General Particle Tracer, we studied the statistical temporal distributions of single-electron packets as a function of various fs pulsed-laser parameters and electron-gun configurations and fields for the exact architecture and dimensions of a Thermo Fisher Tecnai Femto ultrafast electron microscope. We focused on easily-adjustable parameters, such as laser pulse duration, laser spot size, photon energy, Wehnelt aperture diameter, and photocathode size. In addition to establishing trends and dispersion behaviors, we identify regimes within which packet duration can be 100s of fs and approach the 300 fs laser limit employed here. Overall, the results provide a detailed picture of the temporal behavior of single-electron packets in the Tecnai Femto gun region, forming the initial contribution of a larger effort. 
    more » « less
  5. Conventional continuous-wave amplitude-modulated time-of-flight (CWAM ToF) cameras suffer from a fundamental trade-off between light throughput and depth of field (DoF): a larger lens aperture allows more light collection but suffers from significantly lower DoF. However, both high light throughput, which increases signal-to-noise ratio, and a wide DoF, which enlarges the system’s applicable depth range, are valuable for CWAM ToF applications. In this work, we propose EDoF-ToF, an algorithmic method to extend the DoF of large-aperture CWAM ToF cameras by using a neural network to deblur objects outside of the lens’s narrow focal region and thus produce an all-in-focus measurement. A key component of our work is the proposed large-aperture ToF training data simulator, which models the depth-dependent blurs and partial occlusions caused by such apertures. Contrary to conventional image deblurring where the blur model is typically linear, ToF depth maps are nonlinear functions of scene intensities, resulting in a nonlinear blur model that we also derive for our simulator. Unlike extended DoF for conventional photography where depth information needs to be encoded (or made depth-invariant) using additional hardware (phase masks, focal sweeping, etc.), ToF sensor measurements naturally encode depth information, allowing a completely software solution to extended DoF. We experimentally demonstrate EDoF-ToF increasing the DoF of a conventional ToF system by 3.6 ×, effectively achieving the DoF of a smaller lens aperture that allows 22.1 × less light. Ultimately, EDoF-ToF enables CWAM ToF cameras to enjoy the benefits of both high light throughput and a wide DoF. 
    more » « less