Abstract Simulations of galaxy formation are mostly unable to resolve the energy-conserving phase of individual supernova events, having to resort to subgrid models to distribute the energy and momentum resulting from stellar feedback. However, the properties of these simulated galaxies, including the morphology, stellar mass formed, and the burstiness of the star formation history, are highly sensitive to the numerical choices adopted in these subgrid models. Using the SMUGGLE stellar feedback model, we carry out idealized simulations of anMvir∼ 1010M⊙dwarf galaxy, a regime where most simulation codes predict significant burstiness in star formation, resulting in strong gas flows that lead to the formation of dark matter cores. We find that by varying only the directional distribution of momentum imparted from supernovae to the surrounding gas, while holding the total momentum per supernova constant, bursty star formation may be amplified or completely suppressed, and the total stellar mass formed can vary by as much as a factor of ∼3. In particular, when momentum is primarily directed perpendicular to the gas disk, less bursty and lower overall star formation rates result, yielding less gas turbulence, more disky morphologies, and a retention of cuspy dark matter density profiles. An improved understanding of the nonlinear coupling of stellar feedback into inhomogeneous gaseous media is thus needed to make robust predictions for stellar morphologies and dark matter core formation in dwarfs independent of uncertain numerical choices in the baryonic treatment.
more »
« less
Bursting with Feedback: The Relationship between Feedback Model and Bursty Star Formation Histories in Dwarf Galaxies
Abstract Due to their inability to self-regulate, ultrafaint dwarfs are sensitive to prescriptions in subgrid physics models that converge and regulate at higher masses. We use high-resolution cosmological simulations to compare the effect of bursty star formation histories (SFHs) on dwarf galaxy structure for two different subgrid supernova (SN) feedback models, superbubble and blastwave, in dwarf galaxies with stellar masses from 5000 <M*/M⊙< 109. We find that in the “MARVEL-ous Dwarfs” suite both feedback models produce cored galaxies and reproduce observed scaling relations for luminosity, mass, and size. Our sample accurately predicts the average stellar metallicity at higher masses, however low-mass dwarfs are metal poor relative to observed galaxies in the Local Group. We show that continuous bursty star formation and the resulting stellar feedback are able to create dark matter (DM) cores in the higher dwarf galaxy mass regime, while the majority of ultrafaint and classical dwarfs retain cuspy central DM density profiles. We find that the effective core formation peaks atM*/Mhalo≃ 5 × 10−3for both feedback models. Both subgrid SN models yield bursty SFHs at higher masses; however, galaxies simulated with superbubble feedback reach maximum mean burstiness values at lower stellar mass fractions relative to blastwave feedback. As a result, core formation may be better predicted by stellar mass fraction than the burstiness of SFHs.
more »
« less
- Award ID(s):
- 1848107
- PAR ID:
- 10590104
- Publisher / Repository:
- The Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 970
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 40
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present a 3D shape analysis of both dark matter (DM) and stellar matter (SM) in simulated dwarf galaxies to determine whether stellar shape traces DM shape. Using 80 central and satellite dwarf galaxies from three simulation suites (“Marvelous Massive Dwarfs,” “Marvelous Dwarfs,” and the “DC Justice League”) spanning stellar masses of 106–1010M⊙, we measure 3D shapes through the moment of inertia tensor at twice the effective radius to derive axis ratios (C/AandB/A) and triaxiality. We find that stellar shape does follow DM halo shape for our dwarf galaxies. However, the presence of a stellar disk in more massive dwarfs (M* ≳ 107.5M⊙) pulls the distribution of stellarC/Aratios to lower values, while in lower-mass galaxies the gravitational potential remains predominantly shaped by DM. Similarly, stellar triaxiality generally tracks DM triaxiality, with this relationship being particularly strong for nondisky galaxies and weaker in disky systems. These correlations are reinforced by strong alignment between the SM and DM axes, particularly in disk galaxies. Further, we find no detectable difference in either SM or DM shapes when comparing two different supernova feedback implementations, demonstrating that shape measurements are robust to different implementations of baryonic feedback in dwarf galaxies. We also observe that a dwarf galaxy’s shape is largely unperturbed by recent mergers. This comprehensive study demonstrates that stellar shape measurements can serve as a reliable tool for inferring DM shapes in dwarf galaxies.more » « less
-
ABSTRACT We study star formation histories (SFHs) of 500 dwarf galaxies (stellar mass $$M_\ast =10^5\!-\!10^9\, \rm {M}_\odot$$) from FIRE-2 cosmological zoom-in simulations. We compare dwarfs around individual Milky Way (MW)-mass galaxies, dwarfs in Local Group (LG)-like environments, and true field (i.e. isolated) dwarf galaxies. We reproduce observed trends wherein higher mass dwarfs quench later (if at all), regardless of environment. We also identify differences between the environments, both in terms of ‘satellite versus central’ and ‘LG versus individual MW versus isolated dwarf central.’ Around the individual MW-mass hosts, we recover the result expected from environmental quenching: central galaxies in the ‘near field’ have more extended SFHs than their satellite counterparts, with the former more closely resemble isolated (true field) dwarfs (though near-field centrals are still somewhat earlier forming). However, this difference is muted in the LG-like environments, where both near-field centrals and satellites have similar SFHs, which resemble satellites of single MW-mass hosts. This distinction is strongest for M* = 106–$$10^7\, \rm {M}_\odot$$ but exists at other masses. Our results suggest that the paired halo nature of the LG may regulate star formation in dwarf galaxies even beyond the virial radii of the MW and Andromeda. Caution is needed when comparing zoom-in simulations targeting isolated dwarf galaxies against observed dwarf galaxies in the LG.more » « less
-
Abstract The metallicity of galaxies, and its variation with galactocentric radius, provides key insights into the formation histories of galaxies and the physical processes driving their evolution. In this work, we analyze the radial metallicity gradients of star-forming galaxies in the EAGLE, Illustris, IllustrisTNG, and SIMBA cosmological simulations across broad mass (108.0M⊙≤M⋆ ≲ 1012.0M⊙) and redshift (0 ≤z≤ 8) ranges. We find that all simulations predict strong negative (i.e., radially decreasing) metallicity gradients at early cosmic times, likely due to their similar treatments of relatively smooth stellar feedback not providing sufficient mixing to quickly flatten gradients. The strongest redshift evolution occurs in galaxies with stellar masses of 1010.0–1011.0M⊙, while galaxies with stellar mass < 1010M⊙and >1011M⊙exhibit weaker redshift evolution. Our result of negative gradients at high redshift contrast with the many positive and flat gradients in the 1 < z < 4 observational literature. Atz > 6, the negative gradients observed with JWST and the Atacama Large Millimeter/submillimeter Array are flatter than those in simulations, albeit with closer agreement than at lower redshift. Overall, we suggest that these smooth stellar feedback galaxy simulations may not sufficiently mix their metal content radially, and that either stronger stellar feedback or additional subgrid turbulent metal diffusion models may be required to better reproduce observed metallicity gradients.more » « less
-
Abstract Extended, old, and round stellar halos appear to be ubiquitous around high-mass dwarf galaxies (108.5<M⋆/M⊙< 109.6) in the observed universe. However, it is unlikely that these dwarfs have undergone a sufficient number of minor mergers to form stellar halos that are composed of predominantly accreted stars. Here, we demonstrate that FIRE-2 (Feedback in Realistic Environments) cosmological zoom-in simulations are capable of producing dwarf galaxies with realistic structures, including both a thick disk and round stellar halo. Crucially, these stellar halos are formed in situ, largely via the outward migration of disk stars. However, there also exists a large population of “nondisky” dwarfs in FIRE-2 that lack a well-defined disk/halo and do not resemble the observed dwarf population. These nondisky dwarfs tend to be either more gas-poor or to have burstier recent star formation histories than the disky dwarfs, suggesting that star formation feedback may be preventing disk formation. Both classes of dwarfs underscore the power of a galaxy’s intrinsic shape—which is a direct quantification of the distribution of the galaxy’s stellar content—to interrogate the feedback implementation in simulated galaxies.more » « less
An official website of the United States government

