We study how supersonic streaming velocities of baryons relative to dark matter—a large-scale effect imprinted at recombination and coherent over ∼3 Mpc scales—affect the formation of dwarf galaxies at
Extended, old, and round stellar halos appear to be ubiquitous around high-mass dwarf galaxies (108.5<
- PAR ID:
- 10486214
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 931
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 152
- Size(s):
- Article No. 152
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract z ≳ 5. We perform cosmological hydrodynamic simulations, including and excluding streaming velocities, in regions centered on halos withM vir(z = 0) ≈ 1010M ⊙; the simulations are part of the Feedback In Realistic Environments (FIRE) project and run with FIRE-3 physics. Our simulations comprise many thousands of systems with halo masses betweenM vir= 2 × 105M ⊙and 2 × 109M ⊙in the redshift rangez = 20–5. A few hundred of these galaxies form stars and have stellar masses ranging from 100 to 107M ⊙. While star formation is globally delayed by approximately 50 Myr in the streaming relative to nonstreaming simulations and the number of luminous galaxies is correspondingly suppressed at high redshift in the streaming runs, these effects decay with time. Byz = 5, the properties of the simulated galaxies are nearly identical in the streaming versus nonstreaming runs, indicating that any effects of streaming velocities on the properties of galaxies at the mass scale of classical dwarfs and larger do not persist toz = 0. -
Abstract In the era of large-scale spectroscopic surveys in the Local Group, we can explore using chemical abundances of halo stars to study the star formation and chemical enrichment histories of the dwarf galaxy progenitors of the Milky Way (MW) and M31 stellar halos. In this paper, we investigate using the chemical abundance ratio distributions (CARDs) of seven stellar halos from the Latte suite of FIRE-2 simulations. We attempt to infer galaxies’ assembly histories by modeling the CARDs of the stellar halos of the Latte galaxies as a linear combination of
template CARDs from disrupted dwarfs, with different stellar massesM ⋆and quenching timest 100. We present a method for constructing these templates using present-day dwarf galaxies. For four of the seven Latte halos studied in this work, we recover the mass spectrum of accreted dwarfs to a precision of <10%. For the fraction of mass accreted as a function oft 100, we find the residuals of 20%–30% for five of the seven simulations. We discuss the failure modes of this method, which arise from the diversity of star formation and chemical enrichment histories that dwarf galaxies can take. These failure cases can be robustly identified by the high model residuals. Although the CARDs modeling method does not successfully infer the assembly histories in these cases, the CARDs of these disrupted dwarfs contain signatures of their unusual formation histories. Our results are promising for using CARDs to learn more about the histories of the progenitors of the MW and M31 stellar halos. -
Abstract We use a sample of 73 simulated satellite and central dwarf galaxies spanning a stellar mass range of 105.3–109.1
M ⊙to investigate the origin of their stellar age gradients. We find that dwarf galaxies often form their stars “inside-out,” i.e., the stars form at successively larger radii over time. However, the oldest stars get reshuffled beyond the star-forming radius by fluctuations in the gravitational potential well caused by stellar feedback (the same mechanisms that cause dwarfs to form dark matter cores). The result is that many dwarfs appear to have an “outside-in” age gradient atz = 0, with younger stellar populations more centrally concentrated. However, for the reshuffled galaxies with the most extended star formation, young stars can form out to the large radii to which the old stars have been reshuffled, erasing the age gradient. We find that major mergers do not play a significant role in setting the age gradients of dwarfs. We find similar age gradient trends in satellites and field dwarfs, suggesting that environment plays only a minor role, if any. Finally, we find that the age gradient trends are imprinted on the galaxies at later times, suggesting that the stellar reshuffling dominates after the galaxies have formed 50% of their stellar mass. The later reshuffling is at odds with results from thefire-2 simulations. Hence, age gradients offer a test of current star formation and feedback models that can be probed via observations of resolved stellar populations. -
ABSTRACT We explore the radial variation of star formation histories (SFHs) in dwarf galaxies simulated with Feedback In Realistic Environments (FIRE) physics. The sample contains 26 field dwarf galaxies with Mstar = 105–109 M⊙. We find age gradients are common in our dwarfs, with older stars dominant at large radii. The strength of the gradient correlates with overall galaxy age such that earlier star formation produces a more pronounced gradient. The relation between formation time and strength of the gradient is driven by both mergers and star formation feedback. Mergers can both steepen and flatten the age gradient depending on the timing of the merger and SFHs of the merging galaxy. In galaxies without significant mergers, feedback pushes stars to the outskirts. The strength of the age gradient is determined by the subsequent evolution of the galaxy. Galaxies with weak age gradients constantly grow to z = 0, meaning that young star formation occurs at a similar radius to which older stars are heated to. In contrast, galaxies with strong age gradients tend to maintain a constant half-mass radius over time. If real galaxies have age gradients as we predict, stellar population studies that rely on sampling a limited fraction of a galaxy can give a biased view of its global SFH. Central fields can be biased young by Gyrs while outer fields are biased old. Fields positioned near the 2D half-light radius will provide the least biased measure of a dwarf galaxy’s global SFH.more » « less
-
Abstract Over the next decade, the astronomical community will be commissioning multiple wide-field observatories well suited for studying stellar halos in both integrated light and resolved stars. In preparation for this, we use five high-resolution cosmological simulations of Milky Way–like galaxies from the FOGGIE suite to explore the properties and components of stellar halos. These simulations are run with high time (5 Myr) and stellar mass (1000
M ⊙) resolution to better model the properties and origins of low-density regions like stellar halos. We find that the FOGGIE stellar halos have masses, metallicity gradients, and surface brightness profiles that are consistent with observations. In agreement with other simulations, the FOGGIE stellar halos receive 30%–40% of their mass from in situ stars. However, this population is more centrally concentrated in the FOGGIE simulations and therefore does not contribute excess light to the halo outskirts. The remaining stars are accreted from ∼10–50 other galaxies, with the majority of the accreted mass originating in two to four galaxies. While the inner halo (r < 50 kpc) of each FOGGIE galaxy has a large number of contributors, the halo outskirts of three of the five galaxies are primarily made up of stars from only a few contributors. We predict that upcoming wide-field observatories, like the Nancy Grace Roman Space Telescope, will probe stellar halos around Milky Way–like galaxies out to ∼100 kpc in integrated light and will be able to distinguish the debris of dwarf galaxies with extended star formation histories from the underlying halo with resolved color–magnitude diagrams.