skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Training physical matter to matter
A new paradigm for generating adaptive functionality in materials.  more » « less
Award ID(s):
2011854
PAR ID:
10590190
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Royal Society of Chemistry
Date Published:
Journal Name:
Soft Matter
Volume:
20
Issue:
34
ISSN:
1744-683X
Page Range / eLocation ID:
6695 to 6701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present cosmological dark matter (DM)–only zoom-in simulations of a Milky Way analog originating from enhanced linear matter power spectraP(k) relative to the standard cold, collisionless DM (CDM) cosmology. We consider a Gaussian power excess inP(k) followed by a cutoff in select cases; this behavior could arise from early-Universe physics that alters the primordial matter power spectrum or DM physics in the radiation-dominated epoch. We find that enhanced initial conditions (ICs) lead to qualitative differences in substructure relative to CDM. In particular, the subhalo mass function (SHMF) resulting from ICs with both an enhancement and a cutoff is amplified at high masses and suppressed at low masses, indicating that DM substructure is sensitive to features inP(k). Critically, the amplitude and shape of the SHMF enhancement depend on the wavenumber of theP(k) excess and the presence or absence of a cutoff on smaller scales. These alterations to the SHMF are mainly imprinted at infall rather than during tidal evolution. Additionally, subhalos are found systematically closer to the host center, and their concentrations are increased in scenarios withP(k) enhancement. Our work thus reveals effects that must be captured to enableP(k) reconstruction using DM substructure. 
    more » « less
  2. ABSTRACT Forty years ago Witten suggested that dark matter could be composed of macroscopic clusters of strange quark matter. This idea was very popular for several years, but it dropped out of fashion once lattice quantum chromodynamics calculations indicated that the confinement/deconfinement transition, at small baryonic chemical potential, is not first order, which seemed to be a crucial requirement in order to produce large clusters of quarks. Here, we revisit the conditions under which strangelets can be produced in the Early Universe. We discuss the impact of an instability in the hadronic phase separating a low density, positive-strange-charge phase from a high-density phase with a negative strange charge. This second phase can rapidly stabilize by forming colour-superconducting gaps. The strangelets then undergo partial evaporation. In this way, we obtain distributions of their sizes in agreement with the observational constraints and we discuss the many astrophysical and cosmological implications of these objects. Finally, we examine the most promising techniques to detect this type of strangelets. We also show that strangelets can exist with masses $$\lesssim $$1017 g, while primordial black holes are ruled out in that mass range, allowing us to distinguish between these two dark matter candidates. 
    more » « less
  3. A<sc>bstract</sc> Discrete flavor symmetries have been an appealing approach for explaining the observed flavor structure, which is not justified in the Standard Model (SM). Typically, these models require a so-called flavon field in order to give rise to the flavor structure upon the breaking of the flavor symmetry by the vacuum expectation value (VEV) of the flavon. Generally, in order to obtain the desired vacuum alignment, a flavon potential that includes additional so-called driving fields is required. On the other hand, allowing the flavor symmetry to be modular leads to a structure where the couplings are all holomorphic functions that depend only on a complex modulus, thus greatly reducing the number of parameters in the model. We show that these elements can be combined to simultaneously explain the flavor structure and dark matter (DM) relic abundance. We present a modular model with flavon vacuum alignment that allows for realistic flavor predictions while providing a successful fermionic DM candidate. 
    more » « less
  4. ABSTRACT Self-interacting dark matter (SIDM) offers the potential to mitigate some of the discrepancies between simulated cold dark matter (CDM) and observed galactic properties. We introduce a physically motivated SIDM model to understand the effects of self interactions on the properties of Milky Way and dwarf galaxy sized haloes. This model consists of dark matter with a nearly degenerate excited state, which allows for both elastic and inelastic scattering. In particular, the model includes a significant probability for particles to up-scatter from the ground state to the excited state. We simulate a suite of zoom-in Milky Way-sized N-body haloes with six models with different scattering cross sections to study the effects of up-scattering in SIDM models. We find that the up-scattering reaction greatly increases the central densities of the main halo through the loss of kinetic energy. However, the physical model still results in significant coring due to the presence of elastic scattering and down-scattering. These effects are not as apparent in the subhalo population compared to the main halo, but the number of subhaloes is reduced compared to CDM. 
    more » « less
  5. WIMP-type dark matter may have additional interactions that break baryon number, leading to induced nucleon decays which are subject to direct experimental constraints from proton decay experiments. In this work, we analyze the possibility of continuous baryon destruction, deriving strong limits from the dark matter accumulating inside old neutron stars, as such a process leads to excess heat generation. We construct the simplest particle dark matter model that breaks the baryon and lepton numbers separately but conserves B L . Virtual exchange by DM particles in this model results in dinucleon decay via n n n ν ¯ and n p n e + processes. Published by the American Physical Society2025 
    more » « less