Recent observations of high-energy neutrinos from active galactic nuclei (AGN), NGC 1068 and TXS , suggest that cosmic rays (CRs) are accelerated in the vicinity of the central supermassive black hole and high-energy protons and electrons can cool efficiently via interactions with ambient photons and gas. The dark matter density may be significantly enhanced near the black hole, and CRs could lose energies predominantly due to scatterings with the ambient dark matter particles. We propose CR cooling in AGN as a new probe of dark matter-proton and dark matter-electron scatterings. Under plausible astrophysical assumptions, our constraints on sub-GeV dark matter can be the strongest derived to date. Some of the parameter space favored by thermal light dark matter models might already be probed with current multimessenger observations of AGN. Published by the American Physical Society2024
more »
« less
Pattern formation in odd viscoelastic fluids
Nonreciprocal interactions fueled by local energy consumption can be found in biological and synthetic active matter at scales where viscoelastic forces are important. Such systems can be described by “odd” viscoelasticity, which assumes fewer material symmetries than traditional theories. Here we study odd viscoelasticity analytically and using lattice Boltzmann simulations. We identify a pattern-forming instability which produces an oscillating array of fluid vortices, and we elucidate which features govern the growth rate, wavelength, and saturation of the vortices. Our observation of pattern formation through odd mechanical response can inform models of biological patterning and guide engineering of odd dynamics in soft active matter systems. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2011854
- PAR ID:
- 10590203
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 6
- Issue:
- 3
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We introduce and study the first class of signals that can probe the dark matter in mesogenesis, which will be observable at current and upcoming large volume neutrino experiments. The well-motivated mesogenesis scenario for generating the observed matter-antimatter asymmetry necessarily has dark matter charged under the baryon number. Interactions of these particles with nuclei can induce nucleon decay with kinematics differing from spontaneous nucleon decay. We calculate the rate for this process and develop a simulation of the signal that includes important distortions due to nuclear effects. We estimate the sensitivity of DUNE, Super-Kamiokande, Hyper-Kamiokande, and JUNO to this striking signal. Published by the American Physical Society2024more » « less
-
We present a mechanism for producing a cosmologically significant relic density of one or more sterile neutrinos. This scheme invokes two steps: First, a population of “heavy” sterile neutrinos is created by scattering-induced decoherence of active neutrinos. Second, this population is transferred, via sterile neutrino self-interaction-mediated scatterings and decays, to one or more lighter mass ( to ) sterile neutrinos that are far more weakly (or not at all) mixed with active species and could constitute dark matter. Dark matter produced this way can evade current electromagnetic and structure-based bounds, but may nevertheless be probed by future observations. Published by the American Physical Society2024more » « less
-
We investigate the impact of matter effects on (time-reversal)-odd observables, making use of the quantum-mechanical formalism of neutrino-flavor evolution. We attempt to be comprehensive and pedagogical. Matter-induced -invariance violation (TV) is qualitatively different from, and more subtle than, matter-induced (charge-parity)-invariance violation. If the matter distribution is symmetric relative to the neutrino production and detection points, matter effects will not introduce any new TV. However, if there is intrinsic TV, matter effects can modify the size of the -odd observable. On the other hand, if the matter distribution is not symmetric, there is genuine matter-induced TV. For Earth-bound long-baseline oscillation experiments, these effects are small. This remains true for unrealistically-asymmetric matter potentials (for example, we investigate the effects of “hollowing out” 50% of the DUNE neutrino trajectory). More broadly, we explore consequences, or lack thereof, of asymmetric matter potentials on oscillation probabilities. While fascinating in their own right, -odd observables are currently of limited practical use, due in no small part to a dearth of intense, well-characterized, high-energy electron-neutrino beams. Further in the future, however, intense, high-energy muon storage rings might become available and allow for realistic studies of -invariance in neutrino oscillations. Published by the American Physical Society2025more » « less
-
The memory burden effect is an explicit resolution to the information paradox by which an evaporating black hole acquires quantum hair, which then suppresses its rate of mass loss with respect to the semiclassical Hawking rate. We show that this has significant implications for particle dark matter that captures in neutron stars and forms black holes that go on to consume the host star. In particular, we show that constraints on the nucleon scattering cross section and mass of spin-0 and spin- dark matter would be extended by several orders of magnitude. Published by the American Physical Society2025more » « less
An official website of the United States government

