skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Direct measurement of forces in air-based acoustic levitation systems
Acoustic levitation is frequently used for non-contact manipulation of objects and to study the impact of microgravity on physical and biological processes. While the force field produced by sound pressure lifts particles against gravity (primary acoustic force), multiple levitating objects in the same acoustic cavity interact via forces that arise from scattered sound (secondary acoustic forces). Current experimental techniques for obtaining these force fields are not well-suited for mapping the primary force field at high spatial resolution and cannot directly measure the secondary scattering force. Here, we introduce a method that can measure both acoustic forces in situ, including secondary forces in the near-field limit between arbitrarily shaped, closely spaced objects. Operating similarly to an atomic force microscope, the method inserts into the acoustic cavity a suitably shaped probe tip at the end of a long, flexible cantilever and optically detects its deflection. This makes it possible to measure forces with a resolution better than 50 nN and also to apply stress or strain in a controlled manner to manipulate levitated objects. We demonstrate this by extracting the acoustic potential present in a levitation cavity, directly measuring the acoustic scattering force between two objects, and applying tension to a levitated granular raft of acoustically bound particles in order to obtain the force–displacement curve for its deformation.  more » « less
Award ID(s):
2011854
PAR ID:
10590245
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
95
Issue:
9
ISSN:
0034-6748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sound can exert forces on objects of any material and shape. This has made the contactless manipulation of objects by intense ultrasound a fascinating area of research with wide-ranging applications. While much is understood for acoustic forcing of individual objects, sound-mediated interactions among multiple objects at close range gives rise to a rich set of structures and dynamics that are less explored and have been emerging as a frontier for research. We introduce the basic mechanisms giving rise to sound-mediated interactions among rigid as well as deformable particles, focusing on the regime where the particles’ size and spacing are much smaller than the sound wavelength. The interplay of secondary acoustic scattering, Bjerknes forces, and micro-streaming is discussed and the role of particle shape is highlighted. Furthermore, we present recent advances in characterizing non-conservative and non-pairwise additive contributions to the particle interactions, along with instabilities and active fluctuations. These excitations emerge at sufficiently strong sound energy density and can act as an effective temperature in otherwise athermal systems. 
    more » « less
  2. Acoustic levitation in air provides a containerless, gravity-free platform for investigating driven many-particle systems with nonconservative interactions and underdamped dynamics. In prior work the interactions among levitated particles were limited to attractive forces from scattered sound and repulsion from hydrodynamic microstreaming. We report on experiments in which contact cohesion provides a third type of interaction. When particle size and separation are both much smaller than the sound wavelength, this interplay of three interactions results in forces that are attractive over several particle diameters, become repulsive at close approach, and are again attractive at contact. In the presence of sound-induced athermal fluctuations that generate particle collisions, the interplay of these three forces enables the formation of particle chains with anisotropic interactions that depend on chain size and shape due to multibody effects. With the control of the kinetic pathways and the strength of the contact cohesion, different patterns can be assembled, from triangular lattices to labyrinthine patterns of chains to lacelike networks of interconnected rings. These results shed light on the multibody character of acoustic interactions and can be utilized to direct the self-assembly of particles. Published by the American Physical Society2025 
    more » « less
  3. We present a variant of the immersed boundary (IB) method that implements acoustic perturbation theory to model acoustically levitated fluid droplets. Instead of resolving sound waves numerically, our hybrid method solves acoustic scattering semi-analytically to obtain the corresponding time-averaged acoustic forces on the droplet. This framework allows the droplet to be simulated on inertial timescales of interest, and therefore works with much larger time steps than traditional compressible flow solvers. To benchmark this technique and demonstrate its utility, we implement the hybrid IB method for a single droplet in a standing wave. Simulated droplet shape deformations and streaming profiles agree with available theoretical predictions. Our simulations also yield insights into the streaming profiles for elliptical droplets, for which a comprehensive analytic solution does not yet exist. 
    more » « less
  4. null (Ed.)
    We report light-driven levitation of macroscopic polymer films with nanostructured surface as candidates for long-duration near-space flight. We levitated centimeter-scale disks made of commercial 0.5-micron-thick mylar film coated with carbon nanotubes on one side. When illuminated with light intensity comparable to natural sunlight, the polymer disk heats up and interacts with incident gas molecules differently on the top and bottom sides, producing a net recoil force. We observed the levitation of 6-mm-diameter disks in a vacuum chamber at pressures between 10 and 30 Pa. Moreover, we controlled the flight of the disks using a shaped light field that optically trapped the levitating disks. Our experimentally validated theoretical model predicts that the lift forces can be many times the weight of the films, allowing payloads of up to 10 milligrams for sunlight-powered low-cost microflyers at altitudes of 50 to 100 km. 
    more » « less
  5. Acoustic trapping uses forces exerted by sound waves to transport small objects along specified trajectories in three dimensions. The structure of the time-averaged acoustic force landscape acting on an object is determined by the amplitude and phase profiles of the sound's pressure wave. These profiles typically are sculpted by deliberately selecting the amplitude and relative phase of the sound projected by each transducer in large arrays of transducers, all operating at the same carrier frequency. This approach leverages a powerful analogy with holographic optical trapping at the cost of considerable technical complexity. Acoustic force fields also can be shaped by the spectral content of the component sound waves in a manner that is not feasible with light. The same theoretical framework that predicts the time-averaged structure of monotone acoustic force landscapes can be applied to spectrally rich sound fields in the quasistatic approximation, creating opportunities for dexterous control using comparatively simple hardware. We demonstrate this approach to spectral holographic acoustic trapping by projecting acoustic conveyor beams that move millimeter-scale objects along prescribed paths. Spectral control of reflections provides yet another opportunity for controlling the structure and dynamics of an acoustic force landscape. We use this approach to realize two variations on the theme of a wave-driven oscillator, a deceptively simple dynamical system with surprisingly complex phenomenology. 
    more » « less