skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 12, 2026

Title: Cryogenic Electron Microscopy Informed Molecular Dynamics Simulations to Investigate the Disulfide Hydrogel Self‐Assembly
Disulfide hydrogels, derived from cysteine‐based redox systems, exhibit active self‐assembly properties driven by reversible disulfide bond formation, making them a versatile platform for dynamic material design. Detailed cryogenic electron microscopy (cryo‐EM) analysis reveals a consistent fiber diameter of 5.4 nm for individual fibers. Using cryo‐EM‐informed radial positional restraints, all‐atom molecular dynamics (MD) simulations are employed to reproduce fibers with dimensions closely matching experimental observations, validated further through simulated cryo‐EM images. The MD simulations reveal that the disulfide gelator (CSSC) predominantly adopts an open conformation, with hydrogen bonds emerging as the key intermolecular force stabilizing the fibers. Notably, intermolecular interactions are found to be higher at 70% conversion to the disulfide gelator compared with 100%, comparable with past unrestrained simulations. Water molecules and solute‐water hydrogen bonds are present throughout the fiber, indicating that the fiber remains hydrated. These findings underscore the potential role of the thiol precursor CSH in stabilizing the transient phase and highlight the importance of CSH‐CSSC interplay. Herein, it provides novel insights into molecular mechanisms governing active self‐assembly and offers strategies for designing tunable materials through controlled assembly conditions.  more » « less
Award ID(s):
2011967
PAR ID:
10590404
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
ChemPhysChem
ISSN:
1439-4235
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Single-particle cryogenic electron microscopy (cryo-EM) has revolutionized the field of the structural biology, providing an access to the atomic resolution structures of large biomolecular complexes in their near-native environment. Today’s cryo-EM maps can frequently reach the atomic-level resolution, while often containing a range of resolutions, with conformationally variable regions obtained at 6 Å or worse. Low resolution density maps obtained for protein flexible domains, as well as the ensemble of coexisting conformational states arising from cryo-EM, poses new challenges and opportunities for Molecular Dynamics (MD) simulations. With the ability to describe the biomolecular dynamics at the atomic level, MD can extend the capabilities of cryo-EM, capturing the conformational variability and predicting biologically relevant short-lived conformational states. Here, we report about the state-of-the-art MD procedures that are currently used to refine, reconstruct and interpret cryo-EM maps. We show the capability of MD to predict short-lived conformational states, finding remarkable confirmation by cryo-EM structures subsequently solved. This has been the case of the CRISPR-Cas9 genome editing machinery, whose catalytically active structure has been predicted through both long-time scale MD and enhanced sampling techniques 2 years earlier than cryo-EM. In summary, this contribution remarks the ability of MD to complement cryo-EM, describing conformational landscapes and relating structural transitions to function, ultimately discerning relevant short-lived conformational states and providing mechanistic knowledge of biological function. 
    more » « less
  2. Single particle analysis cryo-electron microscopy (EM) and molecular dynamics (MD) have been complimentary methods since cryo-EM was first applied to the field of structural biology. The relationship started by biasing structural models to fit low-resolution cryo-EM maps of large macromolecular complexes not amenable to crystallization. The connection between cryo-EM and MD evolved as cryo-EM maps improved in resolution, allowing advanced sampling algorithms to simultaneously refine backbone and sidechains. Moving beyond a single static snapshot, modern inferencing approaches integrate cryo-EM and MD to generate structural ensembles from cryo-EM map data or directly from the particle images themselves. We summarize the recent history of MD innovations in the area of cryo-EM modeling. The merits for the myriad of MD based cryo-EM modeling methods are discussed, as well as, the discoveries that were made possible by the integration of molecular modeling with cryo-EM. Lastly, current challenges and potential opportunities are reviewed. 
    more » « less
  3. The B cell and T cell antigen receptors (BCR and TCR) share a common architecture in which variable dimeric antigen-binding modules assemble with invariant dimeric signaling modules to form functional receptor complexes. In the TCR, a highly conserved T cell receptor αβ (TCRαβ) transmembrane (TM) interface forms a rigid structure around which its three dimeric signaling modules assemble through well-characterized polar interactions. Noting that the key features stabilizing this TCRαβ TM interface also appear with high evolutionary conservation in the TM sequences of the membrane immunoglobulin (mIg) heavy chains that form the BCR’s homodimeric antigen-binding module, we asked whether the BCR contained an analogous TM structure. Using an unbiased biochemical and computational modeling approach, we found that the mouse IgM BCR forms a core TM structure that is remarkably similar to that of the TCR. This structure is reinforced by a network of interhelical hydrogen bonds, and our model is nearly identical to the arrangement observed in the just-released cryo-electron microscopy (cryo-EM) structures of intact human BCRs. Our biochemical analysis shows that the integrity of this TM structure is vital for stable assembly with the BCR signaling module CD79AB in the B cell endoplasmic reticulum, and molecular dynamics simulations indicate that BCRs of all five isotypes can form comparable structures. These results demonstrate that, despite their many differences in composition, complexity, and ligand type, TCRs and BCRs rely on a common core TM structure that has been shaped by evolution for optimal receptor assembly and stability in the cell membrane. 
    more » « less
  4. Abstract Various robust, crystalline, and porous organic frameworks based on in situ‐formed imine‐linked oligomers were investigated. These oligomers self‐assembled through collaborative intermolecular hydrogen bonding interactions via liquid–liquid interfacial reactions. The soluble oligomers were kinetic products with multiple unreacted aldehyde groups that acted as hydrogen bond donors and acceptors and directed the assembly of the resulting oligomers into 3D frameworks. The sequential formation of robust covalent linkages and highly reversible hydrogen bonds enforced long‐range symmetry and facilitated the production of large single crystals, with structures that were unambiguously determined by single‐crystal X‐ray diffraction. The unique hierarchical arrangements increased the steric hindrance of the imine bond, which prevented attacks from water molecules, greatly improving the stability. The multiple binding sites in the frameworks enabled rapid sequestration of micropollutant in water. 
    more » « less
  5. Polyethylene glycol (PEG) is one of the environmentally benign solvent options for green chemistry. It readily absorbs water when exposed to the atmosphere. The Molecular Dynamics (MD) simulations of PEG200, a commercial mixture of low molecular weight polyethyelene glycol oligomers, as well as di-, tetra-, and hexaethylene glycol are presented to study the effect of added water impurities up to a weight fraction of 0.020, which covers the typical range of water impurities due to water absorption from the atmosphere. Each system was simulated a total of four times using different combinations of two force fields for the water (SPC/E and TIP4P/2005) and two force fields for the PEG and oligomer (OPLS-AA and modified OPLS-AA). The observed trends in the effects of water addition were qualitatively quite robust with respect to these force field combinations and showed that the water does not aggregate but forms hydrogen bonds at most between two water molecules. In general, the added water causes overall either no or very small and nuanced effects in the simulation results. Specifically, the obtained water RDFs are mostly identical regardless of the water content. The added water reduces oligomer hydrogen bonding interactions overall as it competes and forms hydrogen bonds with the oligomers. The loss of intramolecular oligomer hydrogen bonding is in part compensated by oligomers switching from inter- to intramolecular hydrogen bonding. The interplay of the competing hydrogen bonding interactions leads to the presence of shallow extrema with respect to the water weight fraction dependencies for densities, viscosities, and self-diffusion coefficients, in contrast to experimental measurements, which show monotonous dependencies. However, these trends are very small in magnitude and thus confirm the experimentally observed insensitivity of these physical properties to the presence of water impurities. 
    more » « less