skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Near‐Surface Boundary Layer of Hurricane Laura (2020) at Landfall
Abstract While challenging, quantification of the near‐surface landfalling hurricane wind field is necessary for understanding hurricane intensity changes and damage potential. Using single‐ and dual‐Doppler Doppler on Wheels and in situ anemometer data, the wind structure of the very near‐surface boundary layer of Hurricane Laura (2020) is characterized. Small‐scale hurricane boundary layer (HBL) rolls (HBLRs) with a median size of approximately 400 m are present throughout much of the landfall, but are most vigorous in the eyewall. The maximum turbulent kinetic energy (TKE) and momentum flux associated with HBLRs occur in the eyewall and are much larger than previously documented at landfall. DOW‐derived and anemometer‐derived TKE values are comparable. Observed maximum surface gusts were consistent with the maximum radar wind speeds aloft, suggesting the importance of vertical transport within the HBL by sub‐kilometer scale structures for the enhancement of surface wind speeds.  more » « less
Award ID(s):
2112980 2113207
PAR ID:
10590467
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
9
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The hurricane boundary layer (HBL) has been observed in great detail through aircraft investigations of tropical cyclones over the open ocean, but the coastal transition of the HBL has been less frequently observed. During the landfall of Hurricane Irene (2011), research and operational aircraft over water sampled the open-ocean HBL simultaneously with ground-based research and operational Doppler radars onshore. The location of the radars afforded 13 h of dual-Doppler analysis over the coastal region. Thus, the HBL from the coastal waterways, through the coastal transition, and onshore was observed in great detail for the first time. Three regimes of HBL structure were found. The outer bands were characterized by temporal perturbations of the HBL structure with attendant low-level wind maxima in the vicinity of rainbands. The inner core, in contrast, did not produce such perturbations, but did see a reduction of the height of the maximum wind and a more jet-like HBL wind profile. In the eyewall, a tangential wind maximum was observed within the HBL over water as in past studies and above the HBL onshore. However, the transition of the tangential wind maximum through the coastal transition showed that the maximum continued to reside in the HBL through 5 km inland, which has not been observed previously. It is shown that the adjustment of the HBL to the coastal surface roughness discontinuity does not immediately mix out the residual high-momentum jet aloft. Thus, communities closest to the coast are likely to experience the strongest winds onshore prior to the complete adjustment of the HBL. 
    more » « less
  2. Abstract A mobile Shared Mobile Atmospheric Research and Teaching (SMART) radar was deployed in Hurricane Harvey and coordinated with the Corpus Christi, TX, WSR‐88D radar to retrieve airflow during landfall. Aerodynamic surface roughness estimates and a logarithmic wind profile assumption were used to project the 500‐m radar‐derived maximum wind field to near the surface. The logarithmic wind assumption was justified using radiosonde soundings taken within the storm, while the radar wind estimates were validated against an array of StickNets. For the data examined here, the radar projections had root‐mean‐squared error of 3.9 m/s and a high bias of 2.3 m/s. Mesovorticies in Harvey's eyewall produced the strongest radar‐observed winds. Given the wind analysis, Harvey was, at most, a Category 3 hurricane (50–58 m/s sustained winds) at landfall. This study demonstrates the utility of integrated remote and in situ observations in deriving spatiotemporal maps of wind maxima during hurricane landfalls. 
    more » « less
  3. Abstract Accurate prediction of tropical cyclone (TC) intensity remains a significant challenge partially due to physics deficiencies in forecast models. Improvement of boundary layer physics in the turbulent “gray zone” requires a better understanding of spatiotemporal variations of turbulent properties in low-level high-wind regions. To fill the gap, this study utilizes Anduril’s Altius 600, a small uncrewed aircraft system (sUAS), that collected data in the eye and eyewall regions of category 5 Hurricane Ian (2022) at altitudes below 1.4 km. The highest observed wind speed (WSPD) exceeded 105 m s−1at 650-m altitude. The Altius measured turbulent kinetic energy (TKE) and momentum fluxes that were in good agreement with previous crewed aircraft observations. This study explores the scale-awareness turbulent structure by quantifying turbulence-scale (100 m–2 km) and mesoscale (2–10 km) contributions to the total flux and TKE. The results show that mesoscale eddies dominate the horizontal wind variances compared to turbulent eddies. The horizontal wind variances contribute 70%–90% of the total TKE, while the vertical wind variances contribute 10%–30% of the total TKE. Spectral and wavelet analyses demonstrate eddy scales from a few hundred meters up to 10 km, with unique distributions depending on where observations were taken (e.g., eye vs eyewall). These findings underscore the complex and multiscale nature of TKE and momentum fluxes in intense hurricanes and highlight the critical need for advanced observational tools within the high-wind hurricane boundary layer environment. Significance StatementIt is crucial to improve the understanding of turbulent processes in the low-level high-wind regions of tropical cyclones (TCs) for accurate intensity forecasts. Traditional data collection methods involving crewed aircraft are too risky to access these critical regions. This study demonstrates the use of a small uncrewed aircraft system (sUAS) to collect data at low levels within an intense Hurricane Ian (2022). The wind speed measured by the sUAS exceeded 105 m s−1. Important turbulence parameters are estimated and presented as a function of wind speed, height, and radial locations. We found that mesoscale (2–10 km) eddies contributed to a significant portion of the total momentum transfer relative to turbulence-scale (100 m–2 km) eddies. This work demonstrates the usefulness of sUASs for improving the basic understanding of key physical processes in the high-wind hurricane boundary layer. 
    more » « less
  4. Abstract Roll vortices are a series of large-scale turbulent eddies that nearly align with the mean wind direction and prevail in the hurricane boundary layer. In this study, the one-way nested WRF-LES model simulation results from Li et al. (J Atmos Sci 78(6):1847–1867,https://doi.org/10.1175/JAS-D-20-0270.1, 2021) are used to examine the structure and generation mechanism of roll vortices and associated coherent turbulence in the hurricane boundary layer during the landfall of Hurricane Harvey from 00 UTC 25 to 18 UTC 27 August 2017. Results indicate that roll vortices prevail in the hurricane boundary layer. The intense roll vortices and associated large turbulent eddies above them (at a height of ~ 200 to 3000 m) accumulate within a hurricane radius of 20–40 km. Their intensity is proportional to hurricane intensity during the simulation period. Before and during hurricane landfall, strong inflow convergence leads to horizontal advection of roll vortices throughout the entire hurricane boundary layer. Combined with the strong wind shear, the strongest roll vortices and associated large turbulent eddies are generated near the eyewall with suitable thermodynamic (Richardson number at around − 0.2 to 0.2) and dynamic conditions (strong negative inflow wind shear). After landfall, the decayed inflow weakens the inflow convergence and quickly reduces the strong roll vortices and associated large turbulent eddies. Diagnosis of vertical turbulent kinetic energy indicates that atmospheric pressure perturbation, caused by horizontal convergence, transfers the horizontal component of turbulence to the vertical component with a mean wavelength of about 1 km. The buoyancy term is weak and negative, and the large turbulent eddies are suppressed. 
    more » « less
  5. Hurricanes have unique dynamics when compared to regular Atmospheric Boundary Layers (ABLs). Strong winds and elevated surface waves differentiate the air-sea interactions in Hurricane Boundary Layers (HBLs) from classic marine ABLs. Although significant progress has been made in modeling hurricanes, our understanding of the turbulence dynamics of HBLs is still limited due to the lack of sufficient measurement data and high-resolution simulations. Our objective in this work is to address this knowledge gap using high-resolution Large-Eddy Simulations (LESs) that explicitly resolve hurricane turbulence (Momen et al. 2021; Sabet et al. 2022). In this presentation, we will characterize the role of surface waves in HBL mean and turbulence dynamics with the help of multiple unique LES runs in the parameter space of the problem. First, we will show the impacts of surface waves on HBL dynamics using wave-resolving LESs. It was found that the ocean waves can significantly modulate the surface layer dynamics of HBLs as shown in the attached figure. The steep waves in hurricanes were found to remarkably influence the HBL turbulence up to ~800 m away from the surface. The impacts of waves on turbulent eddies are high near the surface (up to ~100 m) as shown in the 3D spatial correlation of the attached figure. Typical low wave ages enhance surface drag and decrease the HBL wind, while higher wave ages can intensify the local surface winds. Moreover, the Turbulent Kinetic Energy (TKE) is increased by the enhanced drag of young waves, while older higher speed waves can decrease the TKE compared to the flat non-wavy case. We also found that higher wave heights, which are more prevalent in hurricanes, magnify these effects. The implications of these results on surface layer parameterizations in large-scale hurricane forecasts will also be briefly discussed using the Weather Research and Forecasting (WRF) model. We will present that the current aerodynamic roughness length parameterizations in WRF overestimate the observational estimates and theoretical hurricane intensity models for high wind regimes over the ocean (≳ 45 m/s). By adjusting the roughness length values in WRF, we were able to improve the intensity forecasts of five strong hurricane cases (category 3-5) by more than 20% on average compared to the default models (Li et al. 2023). These insights and findings can be useful for improving hurricane forecasts in numerical weather prediction models, eventually aiding in disaster preparedness efforts. References: Li, M., J. A. Zhang, L. Matak, and M. Momen, 2023: The impacts of adjusting momentum roughness length on strong and weak hurricanes forecasts: a comprehensive analysis of weather simulations and observations. Mon Weather Rev, https://doi.org/10.1175/MWR-D-22-0191.1. Momen, M., M. B. Parlange, and M. G. Giometto, 2021: Scrambling and reorientation of classical boundary layer turbulence in hurricane winds. Geophys Res Lett, 48, https://doi.org/https://doi.org/10.1029/2020GL091695. Sabet, F., Y. R. Yi, L. Thomas, and M. Momen, 2022: Characterizing mean and turbulent structures of hurricane winds via large-eddy simulations. Proceedings of the Summer Program 2022, Stanford, Center for Turbulence Research, Stanford University, 311–321. 
    more » « less