skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Dynamic Mechanisms Associated with the Structure and Evolution of Roll Vortices and Coherent Turbulence in the Hurricane Boundary Layer: A Large Eddy Simulation During the Landfall of Hurricane Harvey
Abstract

Roll vortices are a series of large-scale turbulent eddies that nearly align with the mean wind direction and prevail in the hurricane boundary layer. In this study, the one-way nested WRF-LES model simulation results from Li et al. (J Atmos Sci 78(6):1847–1867,https://doi.org/10.1175/JAS-D-20-0270.1, 2021) are used to examine the structure and generation mechanism of roll vortices and associated coherent turbulence in the hurricane boundary layer during the landfall of Hurricane Harvey from 00 UTC 25 to 18 UTC 27 August 2017. Results indicate that roll vortices prevail in the hurricane boundary layer. The intense roll vortices and associated large turbulent eddies above them (at a height of ~ 200 to 3000 m) accumulate within a hurricane radius of 20–40 km. Their intensity is proportional to hurricane intensity during the simulation period. Before and during hurricane landfall, strong inflow convergence leads to horizontal advection of roll vortices throughout the entire hurricane boundary layer. Combined with the strong wind shear, the strongest roll vortices and associated large turbulent eddies are generated near the eyewall with suitable thermodynamic (Richardson number at around − 0.2 to 0.2) and dynamic conditions (strong negative inflow wind shear). After landfall, the decayed inflow weakens the inflow convergence and quickly reduces the strong roll vortices and associated large turbulent eddies. Diagnosis of vertical turbulent kinetic energy indicates that atmospheric pressure perturbation, caused by horizontal convergence, transfers the horizontal component of turbulence to the vertical component with a mean wavelength of about 1 km. The buoyancy term is weak and negative, and the large turbulent eddies are suppressed.

 
more » « less
Award ID(s):
2004658
NSF-PAR ID:
10389785
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Boundary-Layer Meteorology
Volume:
186
Issue:
3
ISSN:
0006-8314
Page Range / eLocation ID:
p. 615-636
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Horizontal boundary layer roll vortices are a series of large-scale turbulent eddies that prevail in a hurricane’s boundary layer. In this paper, a one-way nested sub-kilometer-scale large-eddy simulation (LES) based on the Weather Research and Forecasting (WRF) Model was used to examine the impact of roll vortices on the evolution of Hurricane Harvey around its landfall from 0000 UTC 25 August to 1800 UTC 27 August 2017. The simulation results imply that the turbulence in the LES can be attributed mainly to roll vortices. With the representation of roll vortices, the LES provided a better simulation of hurricane wind vertical structure and precipitation. In contrast, the mesoscale simulation with the YSU PBL scheme overestimated the precipitation for the hurricane over the ocean. Further analysis indicates that the roll vortices introduced a positive vertical flux and thinner inflow layer, whereas a negative flux maintained the maximum tangential wind at around 400 m above ground. During hurricane landfall, the weak negative flux maintained the higher wind in the LES. The overestimated low-level vertical flux in the mesoscale simulation with the YSU scheme led to overestimated hurricane intensity over the ocean and accelerated the decay of the hurricane during landfall. Rainfall analysis reveals that the roll vortices led to a weak updraft and insufficient water vapor supply in the LES. For the simulation with the YSU scheme, the strong updraft combined with surplus water vapor eventually led to unrealistic heavy rainfall for the hurricane over the ocean.

     
    more » « less
  2. This talk presents results from the authors’ recent work on evaluating the role of turbulence and boundary-layer parameterizations on hurricane intensification. We show that observation-based modification of these physical parameterizations significantly improved the HWRF intensity forecast. Turbulent mixing in both the vertical and horizontal directions are found to be crucial for hurricane spin-up dynamics in 3D numerical simulations and HWRF forecasts. Vertical turbulent mixing regulates the inflow strength and the location of boundary-layer convergence that in turns regulates the distribution of deep convection and the intensification of the whole hurricane vortex. Convergence of angular momentum in the boundary layer that is a key component of the hurricane spin-up theory is also found to be regulated by vertical turbulent mixing in connection to the boundary layer inflow. Horizontal turbulent mixing, on the other hand, mainly influences the eddy momentum flux inside the radius of the maximum wind speed in the angular momentum budget. The effect of horizontal turbulent mixing on the convergence of angular momentum is on smoothing the radial gradient of the angular momentum when the horizontal mixing length is large. In a sheared storm, both the vertical and horizontal turbulent mixing affect vortex and shear interaction in terms of the evolution of vortex tilt and boundary-layer recovery processes. 
    more » « less
  3. The question of at what resolution the large eddy simulations (LESs) of a tropical cyclone (TC) high wind area may converge largely remains unanswered. To address this issue, LESs with five resolutions of 300 m, 100 m, 60 m, 33 m, and 20 m are performed in this study to simulate a high wind area near the radius of maximum wind of Typhoon Chanthu (2021) using the Weather Research and Forecasting (WRF) model. The results show that, for a limited area LES, model grid resolution may alter the local turbulence structure to generate significantly different extreme values of temperature, moisture, and winds, but it only has a marginal impact on the median values of these variables throughout the vertical column. All simulations are able to capture the turbulent roll vortices in the TC boundary layer, but the structure and intensity of the rolls vary substantially in different resolution simulations. Local hectometer-scale eddies with vertical velocities exceeding 10 m s−1 are only observed in the 20 m resolution simulation but not in the coarser resolution simulations. The ratio of the resolved turbulent momentum fluxes and turbulent kinetic energies (TKEs) to the total momentum fluxes and TKEs appears to show some convergence of LESs when the grid resolution reaches 100 m or finer, suggesting that it is an acceptable grid resolution for LES applications in TC simulations. 
    more » « less
  4. null (Ed.)
    Abstract Dispersion processes in the ocean surface boundary layer (OSBL) determine marine material distributions such as those of plankton and pollutants. Sheared velocities drive shear dispersion, which is traditionally assumed to be due to mean horizontal currents that decrease from the surface. However, OSBL turbulence supports along-wind jets; located in near-surface convergence and downwelling regions, such turbulent jets contain strong local shear. Through wind-driven idealized and large eddy simulation (LES) models of the OSBL, this study examines the role of turbulent along-wind jets in dispersing material. In the idealized model, turbulent jets are generated by prescribed cellular flow with surface convergence and associated downwelling regions. Numeric and analytic model solutions reveal that horizontal jets substantially contribute to along-wind dispersion for sufficiently strong cellular flows and exceed contributions due to vertical mean shear for buoyant surface-trapped material. However, surface convergence regions also accumulate surface-trapped material, reducing shear dispersion by jets. Turbulence resolving LES results of a coastal depth-limited ocean agree qualitatively with the idealized model and reveal long-lived coherent jet structures that are necessary for effective jet dispersion. These coastal results indicate substantial jet contributions to along-wind dispersion. However, jet dispersion is likely less effective in the open ocean because jets are shorter lived, less organized, and distorted due to spiraling Ekman currents. 
    more » « less
  5. The surface wind structure and vertical turbulent transport processes in the eyewall of hurricane Isabel (2003) are investigated using six large-eddy simulations (LESs) with different horizontal grid spacing and three-dimensional (3D) sub-grid scale (SGS) turbulent mixing models and a convection permitting simulation that uses a coarser grid spacing and one-dimensional vertical turbulent mixing scheme. The mean radius-height distribution of storm tangential wind and radial flow, vertical velocity structure, and turbulent kinetic energy and momentum fluxes in the boundary layer generated by LESs are consistent with those derived from historical dropsonde composites, Doppler radar, and aircraft measurements. Unlike the convection permitting simulation that produces storm wind fields lacking small-scale disturbances, all LESs are able to produce sub-kilometer and kilometer scale eddy circulations in the eyewall. The inter-LES differences generally reduce with the decrease of model grid spacing. At 100-m horizontal grid spacing, the vertical momentum fluxes induced by the model-resolved eddies and the associated eddy exchange coefficients in the eyewall simulated by the LESs with different 3D SGS mixing schemes are fairly consistent. Although with uncertainties, the decomposition in terms of eddy scales suggests that sub-kilometer eddies are mainly responsible for the vertical turbulent transport within the boundary layer (~1 km depth following the conventional definition) whereas eddies greater than 1 km become the dominant contributors to the vertical momentum transport above the boundary layer in the eyewall. The strong dependence of vertical turbulent transport on eddy scales suggests that the vertical turbulent mixing parameterization in mesoscale simulations of tropical cyclones is ultimately a scale-sensitive problem. 
    more » « less